Ret.
Abstract:Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare by generating human-like responses across diverse contexts and adapting to novel tasks following human instructions. Their potential application spans a broad range of medical tasks, such as clinical documentation, matching patients to clinical trials, and answering medical questions. In this primer paper, we propose an actionable guideline to help healthcare professionals more efficiently utilize LLMs in their work, along with a set of best practices. This approach consists of several main phases, including formulating the task, choosing LLMs, prompt engineering, fine-tuning, and deployment. We start with the discussion of critical considerations in identifying healthcare tasks that align with the core capabilities of LLMs and selecting models based on the selected task and data, performance requirements, and model interface. We then review the strategies, such as prompt engineering and fine-tuning, to adapt standard LLMs to specialized medical tasks. Deployment considerations, including regulatory compliance, ethical guidelines, and continuous monitoring for fairness and bias, are also discussed. By providing a structured step-by-step methodology, this tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice, ensuring that these powerful technologies are applied in a safe, reliable, and impactful manner.
Abstract:Recent studies have augmented large language models (LLMs) with speech capabilities, leading to the development of speech language models (SpeechLMs). Earlier SpeechLMs focused on single-turn speech-based question answering (QA), where user input comprised a speech context and a text question. More recent studies have extended this to multi-turn conversations, though they often require complex, multi-stage supervised fine-tuning (SFT) with diverse data. Another critical challenge with SpeechLMs is catastrophic forgetting-where models optimized for speech tasks suffer significant degradation in text-only performance. To mitigate these issues, we propose a novel single-stage joint speech-text SFT approach on the low-rank adaptation (LoRA) of the LLM backbone. Our joint SFT combines text-only SFT data with three types of speech-related data: speech recognition and translation, speech-based QA, and mixed-modal SFT. Compared to previous SpeechLMs with 7B or 13B parameters, our 3B model demonstrates superior performance across various speech benchmarks while preserving the original capabilities on text-only tasks. Furthermore, our model shows emergent abilities of effectively handling previously unseen prompts and tasks, including multi-turn, mixed-modal inputs.
Abstract:Sharing protected health information (PHI) is critical for furthering biomedical research. Before data can be distributed, practitioners often perform deidentification to remove any PHI contained in the text. Contemporary deidentification methods are evaluated on highly saturated datasets (tools achieve near-perfect accuracy) which may not reflect the full variability or complexity of real-world clinical text and annotating them is resource intensive, which is a barrier to real-world applications. To address this gap, we developed an adversarial approach using a large language model (LLM) to re-identify the patient corresponding to a redacted clinical note and evaluated the performance with a novel De-Identification/Re-Identification (DIRI) method. Our method uses a large language model to reidentify the patient corresponding to a redacted clinical note. We demonstrate our method on medical data from Weill Cornell Medicine anonymized with three deidentification tools: rule-based Philter and two deep-learning-based models, BiLSTM-CRF and ClinicalBERT. Although ClinicalBERT was the most effective, masking all identified PII, our tool still reidentified 9% of clinical notes Our study highlights significant weaknesses in current deidentification technologies while providing a tool for iterative development and improvement.
Abstract:Despite significant progress in applying large language models (LLMs) to the medical domain, several limitations still prevent them from practical applications. Among these are the constraints on model size and the lack of cohort-specific labeled datasets. In this work, we investigated the potential of improving a lightweight LLM, such as Llama 3.1-8B, through fine-tuning with datasets using synthetic labels. Two tasks are jointly trained by combining their respective instruction datasets. When the quality of the task-specific synthetic labels is relatively high (e.g., generated by GPT4- o), Llama 3.1-8B achieves satisfactory performance on the open-ended disease detection task, with a micro F1 score of 0.91. Conversely, when the quality of the task-relevant synthetic labels is relatively low (e.g., from the MIMIC-CXR dataset), fine-tuned Llama 3.1-8B is able to surpass its noisy teacher labels (micro F1 score of 0.67 v.s. 0.63) when calibrated against curated labels, indicating the strong inherent underlying capability of the model. These findings demonstrate the potential of fine-tuning LLMs with synthetic labels, offering a promising direction for future research on LLM specialization in the medical domain.
Abstract:We introduce ESPnet-EZ, an extension of the open-source speech processing toolkit ESPnet, aimed at quick and easy development of speech models. ESPnet-EZ focuses on two major aspects: (i) easy fine-tuning and inference of existing ESPnet models on various tasks and (ii) easy integration with popular deep neural network frameworks such as PyTorch-Lightning, Hugging Face transformers and datasets, and Lhotse. By replacing ESPnet design choices inherited from Kaldi with a Python-only, Bash-free interface, we dramatically reduce the effort required to build, debug, and use a new model. For example, to fine-tune a speech foundation model, ESPnet-EZ, compared to ESPnet, reduces the number of newly written code by 2.7x and the amount of dependent code by 6.7x while dramatically reducing the Bash script dependencies. The codebase of ESPnet-EZ is publicly available.
Abstract:Large language models (LLMs) hold great promise in summarizing medical evidence. Most recent studies focus on the application of proprietary LLMs. Using proprietary LLMs introduces multiple risk factors, including a lack of transparency and vendor dependency. While open-source LLMs allow better transparency and customization, their performance falls short compared to proprietary ones. In this study, we investigated to what extent fine-tuning open-source LLMs can further improve their performance in summarizing medical evidence. Utilizing a benchmark dataset, MedReview, consisting of 8,161 pairs of systematic reviews and summaries, we fine-tuned three broadly-used, open-sourced LLMs, namely PRIMERA, LongT5, and Llama-2. Overall, the fine-tuned LLMs obtained an increase of 9.89 in ROUGE-L (95% confidence interval: 8.94-10.81), 13.21 in METEOR score (95% confidence interval: 12.05-14.37), and 15.82 in CHRF score (95% confidence interval: 13.89-16.44). The performance of fine-tuned LongT5 is close to GPT-3.5 with zero-shot settings. Furthermore, smaller fine-tuned models sometimes even demonstrated superior performance compared to larger zero-shot models. The above trends of improvement were also manifested in both human and GPT4-simulated evaluations. Our results can be applied to guide model selection for tasks demanding particular domain knowledge, such as medical evidence summarization.
Abstract:Extracting social determinants of health (SDoH) from unstructured medical notes depends heavily on labor-intensive annotations, which are typically task-specific, hampering reusability and limiting sharing. In this study we introduced SDoH-GPT, a simple and effective few-shot Large Language Model (LLM) method leveraging contrastive examples and concise instructions to extract SDoH without relying on extensive medical annotations or costly human intervention. It achieved tenfold and twentyfold reductions in time and cost respectively, and superior consistency with human annotators measured by Cohen's kappa of up to 0.92. The innovative combination of SDoH-GPT and XGBoost leverages the strengths of both, ensuring high accuracy and computational efficiency while consistently maintaining 0.90+ AUROC scores. Testing across three distinct datasets has confirmed its robustness and accuracy. This study highlights the potential of leveraging LLMs to revolutionize medical note classification, demonstrating their capability to achieve highly accurate classifications with significantly reduced time and cost.
Abstract:Convolutions have become essential in state-of-the-art end-to-end Automatic Speech Recognition~(ASR) systems due to their efficient modelling of local context. Notably, its use in Conformers has led to superior performance compared to vanilla Transformer-based ASR systems. While components other than the convolution module in the Conformer have been reexamined, altering the convolution module itself has been far less explored. Towards this, we introduce Multi-Convformer that uses multiple convolution kernels within the convolution module of the Conformer in conjunction with gating. This helps in improved modeling of local dependencies at varying granularities. Our model rivals existing Conformer variants such as CgMLP and E-Branchformer in performance, while being more parameter efficient. We empirically compare our approach with Conformer and its variants across four different datasets and three different modelling paradigms and show up to 8% relative word error rate~(WER) improvements.
Abstract:Self-supervised learning (SSL) has helped extend speech technologies to more languages by reducing the need for labeled data. However, models are still far from supporting the world's 7000+ languages. We propose XEUS, a Cross-lingual Encoder for Universal Speech, trained on over 1 million hours of data across 4057 languages, extending the language coverage of SSL models 4-fold. We combine 1 million hours of speech from existing publicly accessible corpora with a newly created corpus of 7400+ hours from 4057 languages, which will be publicly released. To handle the diverse conditions of multilingual speech data, we augment the typical SSL masked prediction approach with a novel dereverberation objective, increasing robustness. We evaluate XEUS on several benchmarks, and show that it consistently outperforms or achieves comparable results to state-of-the-art (SOTA) SSL models across a variety of tasks. XEUS sets a new SOTA on the ML-SUPERB benchmark: it outperforms MMS 1B and w2v-BERT 2.0 v2 by 0.8% and 4.4% respectively, despite having less parameters or pre-training data. Checkpoints, code, and data are found in https://www.wavlab.org/activities/2024/xeus/.
Abstract:Contextualized end-to-end automatic speech recognition has been an active research area, with recent efforts focusing on the implicit learning of contextual phrases based on the final loss objective. However, these approaches ignore the useful contextual knowledge encoded in the intermediate layers. We hypothesize that employing explicit biasing loss as an auxiliary task in the encoder intermediate layers may better align text tokens or audio frames with the desired objectives. Our proposed intermediate biasing loss brings more regularization and contextualization to the network. Our method outperforms a conventional contextual biasing baseline on the LibriSpeech corpus, achieving a relative improvement of 22.5% in biased word error rate (B-WER) and up to 44% compared to the non-contextual baseline with a biasing list size of 100. Moreover, employing RNN-transducer-driven joint decoding further reduces the unbiased word error rate (U-WER), resulting in a more robust network.