Abstract:Deep Neural Networks have demonstrated remarkable success in various domains but remain susceptible to adversarial examples, which are slightly altered inputs designed to induce misclassification. While adversarial attacks typically optimize under Lp norm constraints, attacks based on the L0 norm, prioritising input sparsity, are less studied due to their complex and non convex nature. These sparse adversarial examples challenge existing defenses by altering a minimal subset of features, potentially uncovering more subtle DNN weaknesses. However, the current L0 norm attack methodologies face a trade off between accuracy and efficiency either precise but computationally intense or expedient but imprecise. This paper proposes a novel, scalable, and effective approach to generate adversarial examples based on the L0 norm, aimed at refining the robustness evaluation of DNNs against such perturbations.
Abstract:Personalized text-to-image models allow users to generate varied styles of images (specified with a sentence) for an object (specified with a set of reference images). While remarkable results have been achieved using diffusion-based generation models, the visual structure and details of the object are often unexpectedly changed during the diffusion process. One major reason is that these diffusion-based approaches typically adopt a simple reconstruction objective during training, which can hardly enforce appropriate structural consistency between the generated and the reference images. To this end, in this paper, we design a novel reinforcement learning framework by utilizing the deterministic policy gradient method for personalized text-to-image generation, with which various objectives, differential or even non-differential, can be easily incorporated to supervise the diffusion models to improve the quality of the generated images. Experimental results on personalized text-to-image generation benchmark datasets demonstrate that our proposed approach outperforms existing state-of-the-art methods by a large margin on visual fidelity while maintaining text-alignment. Our code is available at: \url{https://github.com/wfanyue/DPG-T2I-Personalization}.
Abstract:Cryogenic Electron Tomography (CryoET) is a useful imaging technology in structural biology that is hindered by its need for manual annotations, especially in particle picking. Recent works have endeavored to remedy this issue with few-shot learning or contrastive learning techniques. However, supervised training is still inevitable for them. We instead choose to leverage the power of existing 2D foundation models and present a novel, training-free framework, CryoSAM. In addition to prompt-based single-particle instance segmentation, our approach can automatically search for similar features, facilitating full tomogram semantic segmentation with only one prompt. CryoSAM is composed of two major parts: 1) a prompt-based 3D segmentation system that uses prompts to complete single-particle instance segmentation recursively with Cross-Plane Self-Prompting, and 2) a Hierarchical Feature Matching mechanism that efficiently matches relevant features with extracted tomogram features. They collaborate to enable the segmentation of all particles of one category with just one particle-specific prompt. Our experiments show that CryoSAM outperforms existing works by a significant margin and requires even fewer annotations in particle picking. Further visualizations demonstrate its ability when dealing with full tomogram segmentation for various subcellular structures. Our code is available at: https://github.com/xulabs/aitom
Abstract:Visual Commonsense Reasoning (VCR) calls for explanatory reasoning behind question answering over visual scenes. To achieve this goal, a model is required to provide an acceptable rationale as the reason for the predicted answers. Progress on the benchmark dataset stems largely from the recent advancement of Vision-Language Transformers (VL Transformers). These models are first pre-trained on some generic large-scale vision-text datasets, and then the learned representations are transferred to the downstream VCR task. Despite their attractive performance, this paper posits that the VL Transformers do not exhibit visual commonsense, which is the key to VCR. In particular, our empirical results pinpoint several shortcomings of existing VL Transformers: small gains from pre-training, unexpected language bias, limited model architecture for the two inseparable sub-tasks, and neglect of the important object-tag correlation. With these findings, we tentatively suggest some future directions from the aspect of dataset, evaluation metric, and training tricks. We believe this work could make researchers revisit the intuition and goals of VCR, and thus help tackle the remaining challenges in visual reasoning.
Abstract:In NeRF-aided editing tasks, object movement presents difficulties in supervision generation due to the introduction of variability in object positions. Moreover, the removal operations of certain scene objects often lead to empty regions, presenting challenges for NeRF models in inpainting them effectively. We propose an implicit ray transformation strategy, allowing for direct manipulation of the 3D object's pose by operating on the neural-point in NeRF rays. To address the challenge of inpainting potential empty regions, we present a plug-and-play inpainting module, dubbed differentiable neural-point resampling (DNR), which interpolates those regions in 3D space at the original ray locations within the implicit space, thereby facilitating object removal & scene inpainting tasks. Importantly, employing DNR effectively narrows the gap between ground truth and predicted implicit features, potentially increasing the mutual information (MI) of the features across rays. Then, we leverage DNR and ray transformation to construct a point-based editable NeRF pipeline PR^2T-NeRF. Results primarily evaluated on 3D object removal & inpainting tasks indicate that our pipeline achieves state-of-the-art performance. In addition, our pipeline supports high-quality rendering visualization for diverse editing operations without necessitating extra supervision.
Abstract:Recommendation algorithms forecast user preferences by correlating user and item representations derived from historical interaction patterns. In pursuit of enhanced performance, many methods focus on learning robust and independent representations by disentangling the intricate factors within interaction data across various modalities in an unsupervised manner. However, such an approach obfuscates the discernment of how specific factors (e.g., category or brand) influence the outcomes, making it challenging to regulate their effects. In response to this challenge, we introduce a novel method called Attribute-Driven Disentangled Representation Learning (short for AD-DRL), which explicitly incorporates attributes from different modalities into the disentangled representation learning process. By assigning a specific attribute to each factor in multimodal features, AD-DRL can disentangle the factors at both attribute and attribute-value levels. To obtain robust and independent representations for each factor associated with a specific attribute, we first disentangle the representations of features both within and across different modalities. Moreover, we further enhance the robustness of the representations by fusing the multimodal features of the same factor. Empirical evaluations conducted on three public real-world datasets substantiate the effectiveness of AD-DRL, as well as its interpretability and controllability.
Abstract:Unsupervised anomaly detection (UAD) has been widely implemented in industrial and medical applications, which reduces the cost of manual annotation and improves efficiency in disease diagnosis. Recently, deep auto-encoder with its variants has demonstrated its advantages in many UAD scenarios. Training on the normal data, these models are expected to locate anomalies by producing higher reconstruction error for the abnormal areas than the normal ones. However, this assumption does not always hold because of the uncontrollable generalization capability. To solve this problem, we present LSGS, a method that builds on Vector Quantised-Variational Autoencoder (VQVAE) with a novel aggregated codebook and transformers with global attention. In this work, the VQVAE focus on feature extraction and reconstruction of images, and the transformers fit the manifold and locate anomalies in the latent space. Then, leveraging the generated encoding sequences that conform to a normal distribution, we can reconstruct a more accurate image for locating the anomalies. Experiments on various datasets demonstrate the effectiveness of the proposed method.
Abstract:Visual Commonsense Reasoning (VCR) remains a significant yet challenging research problem in the realm of visual reasoning. A VCR model generally aims at answering a textual question regarding an image, followed by the rationale prediction for the preceding answering process. Though these two processes are sequential and intertwined, existing methods always consider them as two independent matching-based instances. They, therefore, ignore the pivotal relationship between the two processes, leading to sub-optimal model performance. This paper presents a novel visual attention alignment method to efficaciously handle these two processes in a unified framework. To achieve this, we first design a re-attention module for aggregating the vision attention map produced in each process. Thereafter, the resultant two sets of attention maps are carefully aligned to guide the two processes to make decisions based on the same image regions. We apply this method to both conventional attention and the recent Transformer models and carry out extensive experiments on the VCR benchmark dataset. The results demonstrate that with the attention alignment module, our method achieves a considerable improvement over the baseline methods, evidently revealing the feasibility of the coupling of the two processes as well as the effectiveness of the proposed method.
Abstract:Temporal modeling is crucial for various video learning tasks. Most recent approaches employ either factorized (2D+1D) or joint (3D) spatial-temporal operations to extract temporal contexts from the input frames. While the former is more efficient in computation, the latter often obtains better performance. In this paper, we attribute this to a dilemma between the sufficiency and the efficiency of interactions among various positions in different frames. These interactions affect the extraction of task-relevant information shared among frames. To resolve this issue, we prove that frame-by-frame alignments have the potential to increase the mutual information between frame representations, thereby including more task-relevant information to boost effectiveness. Then we propose Alignment-guided Temporal Attention (ATA) to extend 1-dimensional temporal attention with parameter-free patch-level alignments between neighboring frames. It can act as a general plug-in for image backbones to conduct the action recognition task without any model-specific design. Extensive experiments on multiple benchmarks demonstrate the superiority and generality of our module.
Abstract:Expanding an existing tourist photo from a partially captured scene to a full scene is one of the desired experiences for photography applications. Although photo extrapolation has been well studied, it is much more challenging to extrapolate a photo (i.e., selfie) from a narrow field of view to a wider one while maintaining a similar visual style. In this paper, we propose a factorized neural re-rendering model to produce photorealistic novel views from cluttered outdoor Internet photo collections, which enables the applications including controllable scene re-rendering, photo extrapolation and even extrapolated 3D photo generation. Specifically, we first develop a novel factorized re-rendering pipeline to handle the ambiguity in the decomposition of geometry, appearance and illumination. We also propose a composited training strategy to tackle the unexpected occlusion in Internet images. Moreover, to enhance photo-realism when extrapolating tourist photographs, we propose a novel realism augmentation process to complement appearance details, which automatically propagates the texture details from a narrow captured photo to the extrapolated neural rendered image. The experiments and photo editing examples on outdoor scenes demonstrate the superior performance of our proposed method in both photo-realism and downstream applications.