Abstract:Dynamic graph learning is essential for applications involving temporal networks and requires effective modeling of temporal relationships. Seminal attention-based models like TGAT and DyGFormer rely on sinusoidal time encoders to capture temporal relationships between edge events. In this paper, we study a simpler alternative: the linear time encoder, which avoids temporal information loss caused by sinusoidal functions and reduces the need for high dimensional time encoders. We show that the self-attention mechanism can effectively learn to compute time spans from linear time encodings and extract relevant temporal patterns. Through extensive experiments on six dynamic graph datasets, we demonstrate that the linear time encoder improves the performance of TGAT and DyGFormer in most cases. Moreover, the linear time encoder can lead to significant savings in model parameters with minimal performance loss. For example, compared to a 100-dimensional sinusoidal time encoder, TGAT with a 2-dimensional linear time encoder saves 43% of parameters and achieves higher average precision on five datasets. These results can be readily used to positively impact the design choices of a wide variety of dynamic graph learning architectures. The experimental code is available at: https://github.com/hsinghuan/dg-linear-time.git.
Abstract:Multi-objective learning endeavors to concurrently optimize multiple objectives using a single model, aiming to achieve high and balanced performance across these diverse objectives. However, it often involves a more complex optimization problem, particularly when navigating potential conflicts between objectives, leading to solutions with higher memory requirements and computational complexity. This paper introduces a Multi-Objective Goal-Conditioned Supervised Learning (MOGCSL) framework for automatically learning to achieve multiple objectives from offline sequential data. MOGCSL extends the conventional Goal-Conditioned Supervised Learning (GCSL) method to multi-objective scenarios by redefining goals from one-dimensional scalars to multi-dimensional vectors. The need for complex architectures and optimization constraints can be naturally eliminated. MOGCSL benefits from filtering out uninformative or noisy instances that do not achieve desirable long-term rewards. It also incorporates a novel goal-choosing algorithm to model and select "high" achievable goals for inference. While MOGCSL is quite general, we focus on its application to the next action prediction problem in commercial-grade recommender systems. In this context, any viable solution needs to be reasonably scalable and also be robust to large amounts of noisy data that is characteristic of this application space. We show that MOGCSL performs admirably on both counts. Specifically, extensive experiments conducted on real-world recommendation datasets validate its efficacy and efficiency. Also, analysis and experiments are included to explain its strength in discounting the noisier portions of training data in recommender systems.
Abstract:Achieving fairness across diverse clients in Federated Learning (FL) remains a significant challenge due to the heterogeneity of the data and the inaccessibility of sensitive attributes from clients' private datasets. This study addresses this issue by introducing \texttt{EquiFL}, a novel approach designed to enhance both local and global fairness in federated learning environments. \texttt{EquiFL} incorporates a fairness term into the local optimization objective, effectively balancing local performance and fairness. The proposed coordination mechanism also prevents bias from propagating across clients during the collaboration phase. Through extensive experiments across multiple benchmarks, we demonstrate that \texttt{EquiFL} not only strikes a better balance between accuracy and fairness locally at each client but also achieves global fairness. The results also indicate that \texttt{EquiFL} ensures uniform performance distribution among clients, thus contributing to performance fairness. Furthermore, we showcase the benefits of \texttt{EquiFL} in a real-world distributed dataset from a healthcare application, specifically in predicting the effects of treatments on patients across various hospital locations.
Abstract:Popular parameter-efficient fine-tuning (PEFT) methods, such as LoRA and its variants, freeze pre-trained model weights \(W\) and inject learnable matrices \(\Delta W\). These \(\Delta W\) matrices are structured for efficient parameterization, often using techniques like low-rank approximations or scaling vectors. However, these methods typically show a performance gap compared to full fine-tuning. Although recent PEFT methods have narrowed this gap, they do so at the cost of additional learnable parameters. We propose SVFT, a simple approach that fundamentally differs from existing methods: the structure imposed on \(\Delta W\) depends on the specific weight matrix \(W\). Specifically, SVFT updates \(W\) as a sparse combination of outer products of its singular vectors, training only the coefficients (scales) of these sparse combinations. This approach allows fine-grained control over expressivity through the number of coefficients. Extensive experiments on language and vision benchmarks show that SVFT recovers up to 96% of full fine-tuning performance while training only 0.006 to 0.25% of parameters, outperforming existing methods that only recover up to 85% performance using 0.03 to 0.8% of the trainable parameter budget.
Abstract:Image Classification and Video Action Recognition are perhaps the two most foundational tasks in computer vision. Consequently, explaining the inner workings of trained deep neural networks is of prime importance. While numerous efforts focus on explaining the decisions of trained deep neural networks in image classification, exploration in the domain of its temporal version, video action recognition, has been scant. In this work, we take a deeper look at this problem. We begin by revisiting Grad-CAM, one of the popular feature attribution methods for Image Classification, and its extension to Video Action Recognition tasks and examine the method's limitations. To address these, we introduce Video-TCAV, by building on TCAV for Image Classification tasks, which aims to quantify the importance of specific concepts in the decision-making process of Video Action Recognition models. As the scalable generation of concepts is still an open problem, we propose a machine-assisted approach to generate spatial and spatiotemporal concepts relevant to Video Action Recognition for testing Video-TCAV. We then establish the importance of temporally-varying concepts by demonstrating the superiority of dynamic spatiotemporal concepts over trivial spatial concepts. In conclusion, we introduce a framework for investigating hypotheses in action recognition and quantitatively testing them, thus advancing research in the explainability of deep neural networks used in video action recognition.
Abstract:In real-world graph data, distribution shifts can manifest in various ways, such as the emergence of new categories and changes in the relative proportions of existing categories. It is often important to detect nodes of novel categories under such distribution shifts for safety or insight discovery purposes. We introduce a new approach, Recall-Constrained Optimization with Selective Link Prediction (RECO-SLIP), to detect nodes belonging to novel categories in attributed graphs under subpopulation shifts. By integrating a recall-constrained learning framework with a sample-efficient link prediction mechanism, RECO-SLIP addresses the dual challenges of resilience against subpopulation shifts and the effective exploitation of graph structure. Our extensive empirical evaluation across multiple graph datasets demonstrates the superior performance of RECO-SLIP over existing methods.
Abstract:Data accuracy is essential for scientific research and policy development. The National Violent Death Reporting System (NVDRS) data is widely used for discovering the patterns and causes of death. Recent studies suggested the annotation inconsistencies within the NVDRS and the potential impact on erroneous suicide-cause attributions. We present an empirical Natural Language Processing (NLP) approach to detect annotation inconsistencies and adopt a cross-validation-like paradigm to identify problematic instances. We analyzed 267,804 suicide death incidents between 2003 and 2020 from the NVDRS. Our results showed that incorporating the target state's data into training the suicide-crisis classifier brought an increase of 5.4% to the F-1 score on the target state's test set and a decrease of 1.1% on other states' test set. To conclude, we demonstrated the annotation inconsistencies in NVDRS's death investigation notes, identified problematic instances, evaluated the effectiveness of correcting problematic instances, and eventually proposed an NLP improvement solution.
Abstract:Machine learning methods for estimating heterogeneous treatment effects (HTE) facilitate large-scale personalized decision-making across various domains such as healthcare, policy making, education, and more. Current machine learning approaches for HTE require access to substantial amounts of data per treatment, and the high costs associated with interventions makes centrally collecting so much data for each intervention a formidable challenge. To overcome this obstacle, in this work, we propose a novel framework for collaborative learning of HTE estimators across institutions via Federated Learning. We show that even under a diversity of interventions and subject populations across clients, one can jointly learn a common feature representation, while concurrently and privately learning the specific predictive functions for outcomes under distinct interventions across institutions. Our framework and the associated algorithm are based on this insight, and leverage tabular transformers to map multiple input data to feature representations which are then used for outcome prediction via multi-task learning. We also propose a novel way of federated training of personalised transformers that can work with heterogeneous input feature spaces. Experimental results on real-world clinical trial data demonstrate the effectiveness of our method.
Abstract:In several practical applications of federated learning (FL), the clients are highly heterogeneous in terms of both their data and compute resources, and therefore enforcing the same model architecture for each client is very limiting. Moreover, the need for uncertainty quantification and data privacy constraints are often particularly amplified for clients that have limited local data. This paper presents a unified FL framework to simultaneously address all these constraints and concerns, based on training customized local Bayesian models that learn well even in the absence of large local datasets. A Bayesian framework provides a natural way of incorporating supervision in the form of prior distributions. We use priors in the functional (output) space of the networks to facilitate collaboration across heterogeneous clients. Moreover, formal differential privacy guarantees are provided for this framework. Experiments on standard FL datasets demonstrate that our approach outperforms strong baselines in both homogeneous and heterogeneous settings and under strict privacy constraints, while also providing characterizations of model uncertainties.
Abstract:Interpretable entity representations (IERs) are sparse embeddings that are "human-readable" in that dimensions correspond to fine-grained entity types and values are predicted probabilities that a given entity is of the corresponding type. These methods perform well in zero-shot and low supervision settings. Compared to standard dense neural embeddings, such interpretable representations may permit analysis and debugging. However, while fine-tuning sparse, interpretable representations improves accuracy on downstream tasks, it destroys the semantics of the dimensions which were enforced in pre-training. Can we maintain the interpretable semantics afforded by IERs while improving predictive performance on downstream tasks? Toward this end, we propose Intermediate enTity-based Sparse Interpretable Representation Learning (ItsIRL). ItsIRL realizes improved performance over prior IERs on biomedical tasks, while maintaining "interpretability" generally and their ability to support model debugging specifically. The latter is enabled in part by the ability to perform "counterfactual" fine-grained entity type manipulation, which we explore in this work. Finally, we propose a method to construct entity type based class prototypes for revealing global semantic properties of classes learned by our model.