Abstract:Drug discovery is a critical task in biomedical natural language processing (NLP), yet explainable drug discovery remains underexplored. Meanwhile, large language models (LLMs) have shown remarkable abilities in natural language understanding and generation. Leveraging LLMs for explainable drug discovery has the potential to improve downstream tasks and real-world applications. In this study, we utilize open-source drug knowledge graphs, clinical trial data, and PubMed publications to construct a comprehensive dataset for the explainable drug discovery task, named \textbf{expRxRec}. Furthermore, we introduce \textbf{KEDRec-LM}, an instruction-tuned LLM which distills knowledge from rich medical knowledge corpus for drug recommendation and rationale generation. To encourage further research in this area, we will publicly release\footnote{A copy is attached with this submission} both the dataset and KEDRec-LM.
Abstract:This report explores the enhancement of text retrieval performance using advanced data refinement techniques. We develop Linq-Embed-Mistral\footnote{\url{https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral}} by building on the E5-mistral and Mistral-7B-v0.1 models, focusing on sophisticated data crafting, data filtering, and negative mining methods, which are highly tailored to each task, applied to both existing benchmark dataset and highly tailored synthetic dataset generated via large language models (LLMs). Linq-Embed-Mistral excels in the MTEB benchmarks (as of May 29, 2024), achieving an average score of 68.2 across 56 datasets, and ranks 1st among all models for retrieval tasks on the MTEB leaderboard with a performance score of 60.2. This performance underscores its superior capability in enhancing search precision and reliability. Our contributions include advanced data refinement methods that significantly improve model performance on benchmark and synthetic datasets, techniques for homogeneous task ordering and mixed task fine-tuning to enhance model generalization and stability, and a streamlined evaluation process using 4-bit precision and a light retrieval evaluation set, which accelerates validation without sacrificing accuracy.
Abstract:Large language models (LLMs) typically improve performance by either retrieving semantically similar information, or enhancing reasoning abilities through structured prompts like chain-of-thought. While both strategies are considered crucial, it remains unclear which has a greater impact on model performance or whether a combination of both is necessary. This paper answers this question by proposing a knowledge graph (KG)-based random-walk reasoning approach that leverages causal relationships. We conduct experiments on the commonsense question answering task that is based on a KG. The KG inherently provides both relevant information, such as related entity keywords, and a reasoning structure through the connections between nodes. Experimental results show that the proposed KG-based random-walk reasoning method improves the reasoning ability and performance of LLMs. Interestingly, incorporating three seemingly irrelevant sentences into the query using KG-based random-walk reasoning enhances LLM performance, contrary to conventional wisdom. These findings suggest that integrating causal structures into prompts can significantly improve reasoning capabilities, providing new insights into the role of causality in optimizing LLM performance.
Abstract:Achieving fairness across diverse clients in Federated Learning (FL) remains a significant challenge due to the heterogeneity of the data and the inaccessibility of sensitive attributes from clients' private datasets. This study addresses this issue by introducing \texttt{EquiFL}, a novel approach designed to enhance both local and global fairness in federated learning environments. \texttt{EquiFL} incorporates a fairness term into the local optimization objective, effectively balancing local performance and fairness. The proposed coordination mechanism also prevents bias from propagating across clients during the collaboration phase. Through extensive experiments across multiple benchmarks, we demonstrate that \texttt{EquiFL} not only strikes a better balance between accuracy and fairness locally at each client but also achieves global fairness. The results also indicate that \texttt{EquiFL} ensures uniform performance distribution among clients, thus contributing to performance fairness. Furthermore, we showcase the benefits of \texttt{EquiFL} in a real-world distributed dataset from a healthcare application, specifically in predicting the effects of treatments on patients across various hospital locations.
Abstract:In the era of big data, access to abundant data is crucial for driving research forward. However, such data is often inaccessible due to privacy concerns or high costs, particularly in healthcare domain. Generating synthetic (tabular) data can address this, but existing models typically require substantial amounts of data to train effectively, contradicting our objective to solve data scarcity. To address this challenge, we propose a novel framework to generate synthetic tabular data, powered by large language models (LLMs) that emulates the architecture of a Generative Adversarial Network (GAN). By incorporating data generation process as contextual information and utilizing LLM as the optimizer, our approach significantly enhance the quality of synthetic data generation in common scenarios with small sample sizes. Our experimental results on public and private datasets demonstrate that our model outperforms several state-of-art models regarding generating higher quality synthetic data for downstream tasks while keeping privacy of the real data.
Abstract:Recommender systems have been actively studied and applied in various domains to deal with information overload. Although there are numerous studies on recommender systems for movies, music, and e-commerce, comparatively less attention has been paid to the recommender system for NFTs despite the continuous growth of the NFT market. This paper presents a recommender system for NFTs that utilizes a variety of data sources, from NFT transaction records to external item features, to generate precise recommendations that cater to individual preferences. We develop a data-efficient graph-based recommender system to efficiently capture the complex relationship between each item and users and generate node(item) embeddings which incorporate both node feature information and graph structure. Furthermore, we exploit inputs beyond user-item interactions, such as image feature, text feature, and price feature. Numerical experiments verify the performance of the graph-based recommender system improves significantly after utilizing all types of item features as side information, thereby outperforming all other baselines.
Abstract:This paper explores the utilization of Temporal Graph Networks (TGN) for financial anomaly detection, a pressing need in the era of fintech and digitized financial transactions. We present a comprehensive framework that leverages TGN, capable of capturing dynamic changes in edges within financial networks, for fraud detection. Our study compares TGN's performance against static Graph Neural Network (GNN) baselines, as well as cutting-edge hypergraph neural network baselines using DGraph dataset for a realistic financial context. Our results demonstrate that TGN significantly outperforms other models in terms of AUC metrics. This superior performance underlines TGN's potential as an effective tool for detecting financial fraud, showcasing its ability to adapt to the dynamic and complex nature of modern financial systems. We also experimented with various graph embedding modules within the TGN framework and compared the effectiveness of each module. In conclusion, we demonstrated that, even with variations within TGN, it is possible to achieve good performance in the anomaly detection task.
Abstract:Addressing the challenges related to data sparsity, cold-start problems, and diversity in recommendation systems is both crucial and demanding. Many current solutions leverage knowledge graphs to tackle these issues by combining both item-based and user-item collaborative signals. A common trend in these approaches focuses on improving ranking performance at the cost of escalating model complexity, reducing diversity, and complicating the task. It is essential to provide recommendations that are both personalized and diverse, rather than solely relying on achieving high rank-based performance, such as Click-through Rate, Recall, etc. In this paper, we propose a hybrid multi-task learning approach, training on user-item and item-item interactions. We apply item-based contrastive learning on descriptive text, sampling positive and negative pairs based on item metadata. Our approach allows the model to better understand the relationships between entities within the knowledge graph by utilizing semantic information from text. It leads to more accurate, relevant, and diverse user recommendations and a benefit that extends even to cold-start users who have few interactions with items. We perform extensive experiments on two widely used datasets to validate the effectiveness of our approach. Our findings demonstrate that jointly training user-item interactions and item-based signals using synopsis text is highly effective. Furthermore, our results provide evidence that item-based contrastive learning enhances the quality of entity embeddings, as indicated by metrics such as uniformity and alignment.
Abstract:Recommender systems, crucial for user engagement on platforms like e-commerce and streaming services, often lag behind users' evolving preferences due to static data reliance. After Temporal Graph Networks (TGNs) were proposed, various studies have shown that TGN can significantly improve situations where the features of nodes and edges dynamically change over time. However, despite its promising capabilities, it has not been directly applied in recommender systems to date. Our study bridges this gap by directly implementing Temporal Graph Networks (TGN) in recommender systems, a first in this field. Using real-world datasets and a range of graph and history embedding methods, we show TGN's adaptability, confirming its effectiveness in dynamic recommendation scenarios.
Abstract:Improving the accessibility of psychotherapy with the aid of Large Language Models (LLMs) is garnering a significant attention in recent years. Recognizing cognitive distortions from the interviewee's utterances can be an essential part of psychotherapy, especially for cognitive behavioral therapy. In this paper, we propose ERD, which improves LLM-based cognitive distortion classification performance with the aid of additional modules of (1) extracting the parts related to cognitive distortion, and (2) debating the reasoning steps by multiple agents. Our experimental results on a public dataset show that ERD improves the multi-class F1 score as well as binary specificity score. Regarding the latter score, it turns out that our method is effective in debiasing the baseline method which has high false positive rate, especially when the summary of multi-agent debate is provided to LLMs.