Department of Health Data Science and Artificial Intelligence, McWilliams School of Biomedical Informatics, UT Health Houston, TX
Abstract:This paper presents a framework for privacy-preserving verification of machine learning models, focusing on models trained on sensitive data. Integrating Local Differential Privacy (LDP) with model explanations from LIME and SHAP, our framework enables robust verification without compromising individual privacy. It addresses two key tasks: binary classification, to verify if a target model was trained correctly by applying the appropriate preprocessing steps, and multi-class classification, to identify specific preprocessing errors. Evaluations on three real-world datasets-Diabetes, Adult, and Student Record-demonstrate that while the ML-based approach is particularly effective in binary tasks, the threshold-based method performs comparably in multi-class tasks. Results indicate that although verification accuracy varies across datasets and noise levels, the framework provides effective detection of preprocessing errors, strong privacy guarantees, and practical applicability for safeguarding sensitive data.
Abstract:Common Data Elements (CDEs) standardize data collection and sharing across studies, enhancing data interoperability and improving research reproducibility. However, implementing CDEs presents challenges due to the broad range and variety of data elements. This study aims to develop an effective and efficient mapping tool to bridge the gap between local data elements and National Institutes of Health (NIH) CDEs. We propose CDEMapper, a large language model (LLM) powered mapping tool designed to assist in mapping local data elements to NIH CDEs. CDEMapper has three core modules: (1) CDE indexing and embeddings. NIH CDEs were indexed and embedded to support semantic search; (2) CDE recommendations. The tool combines Elasticsearch (BM25 similarity methods) with state of the art GPT services to recommend candidate CDEs and their permissible values; and (3) Human review. Users review and select the NIH CDEs and values that best match their data elements and value sets. We evaluate the tool recommendation accuracy against manually annotated mapping results. CDEMapper offers a publicly available, LLM-powered, and intuitive user interface that consolidates essential and advanced mapping services into a streamlined pipeline. It provides a step by step, quality assured mapping workflow designed with a user-centered approach. The evaluation results demonstrated that augmenting BM25 with GPT embeddings and a ranker consistently enhances CDEMapper mapping accuracy in three different mapping settings across four evaluation datasets. This work opens up the potential of using LLMs to assist with CDE recommendation and human curation when aligning local data elements with NIH CDEs. Additionally, this effort enhances clinical research data interoperability and helps researchers better understand the gaps between local data elements and NIH CDEs.
Abstract:Backgrounds: Information extraction (IE) is critical in clinical natural language processing (NLP). While large language models (LLMs) excel on generative tasks, their performance on extractive tasks remains debated. Methods: We investigated Named Entity Recognition (NER) and Relation Extraction (RE) using 1,588 clinical notes from four sources (UT Physicians, MTSamples, MIMIC-III, and i2b2). We developed an annotated corpus covering 4 clinical entities and 16 modifiers, and compared instruction-tuned LLaMA-2 and LLaMA-3 against BiomedBERT in terms of performance, generalizability, computational resources, and throughput to BiomedBERT. Results: LLaMA models outperformed BiomedBERT across datasets. With sufficient training data, LLaMA showed modest improvements (1% on NER, 1.5-3.7% on RE); improvements were larger with limited training data. On unseen i2b2 data, LLaMA-3-70B outperformed BiomedBERT by 7% (F1) on NER and 4% on RE. However, LLaMA models required more computing resources and ran up to 28 times slower. We implemented "Kiwi," a clinical IE package featuring both models, available at https://kiwi.clinicalnlp.org/. Conclusion: This study is among the first to develop and evaluate a comprehensive clinical IE system using open-source LLMs. Results indicate that LLaMA models outperform BiomedBERT for clinical NER and RE but with higher computational costs and lower throughputs. These findings highlight that choosing between LLMs and traditional deep learning methods for clinical IE applications should remain task-specific, taking into account both performance metrics and practical considerations such as available computing resources and the intended use case scenarios.
Abstract:This research addresses the issue of missing structured data in dental records by extracting diagnostic information from unstructured text. The updated periodontology classification system's complexity has increased incomplete or missing structured diagnoses. To tackle this, we use advanced AI and NLP methods, leveraging GPT-4 to generate synthetic notes for fine-tuning a RoBERTa model. This significantly enhances the model's ability to understand medical and dental language. We evaluated the model using 120 randomly selected clinical notes from two datasets, demonstrating its improved diagnostic extraction accuracy. The results showed high accuracy in diagnosing periodontal status, stage, and grade, with Site 1 scoring 0.99 and Site 2 scoring 0.98. In the subtype category, Site 2 achieved perfect scores, outperforming Site 1. This method enhances extraction accuracy and broadens its use across dental contexts. The study underscores AI and NLP's transformative impact on healthcare delivery and management. Integrating AI and NLP technologies enhances documentation and simplifies administrative tasks by precisely extracting complex clinical information. This approach effectively addresses challenges in dental diagnostics. Using synthetic training data from LLMs optimizes the training process, improving accuracy and efficiency in identifying periodontal diagnoses from clinical notes. This innovative method holds promise for broader healthcare applications, potentially improving patient care quality.
Abstract:This study examines integrating EHRs and NLP with large language models (LLMs) to improve healthcare data management and patient care. It focuses on using advanced models to create secure, HIPAA-compliant synthetic patient notes for biomedical research. The study used de-identified and re-identified MIMIC III datasets with GPT-3.5, GPT-4, and Mistral 7B to generate synthetic notes. Text generation employed templates and keyword extraction for contextually relevant notes, with one-shot generation for comparison. Privacy assessment checked PHI occurrence, while text utility was tested using an ICD-9 coding task. Text quality was evaluated with ROUGE and cosine similarity metrics to measure semantic similarity with source notes. Analysis of PHI occurrence and text utility via the ICD-9 coding task showed that the keyword-based method had low risk and good performance. One-shot generation showed the highest PHI exposure and PHI co-occurrence, especially in geographic location and date categories. The Normalized One-shot method achieved the highest classification accuracy. Privacy analysis revealed a critical balance between data utility and privacy protection, influencing future data use and sharing. Re-identified data consistently outperformed de-identified data. This study demonstrates the effectiveness of keyword-based methods in generating privacy-protecting synthetic clinical notes that retain data usability, potentially transforming clinical data-sharing practices. The superior performance of re-identified over de-identified data suggests a shift towards methods that enhance utility and privacy by using dummy PHIs to perplex privacy attacks.
Abstract:In the era of big data, access to abundant data is crucial for driving research forward. However, such data is often inaccessible due to privacy concerns or high costs, particularly in healthcare domain. Generating synthetic (tabular) data can address this, but existing models typically require substantial amounts of data to train effectively, contradicting our objective to solve data scarcity. To address this challenge, we propose a novel framework to generate synthetic tabular data, powered by large language models (LLMs) that emulates the architecture of a Generative Adversarial Network (GAN). By incorporating data generation process as contextual information and utilizing LLM as the optimizer, our approach significantly enhance the quality of synthetic data generation in common scenarios with small sample sizes. Our experimental results on public and private datasets demonstrate that our model outperforms several state-of-art models regarding generating higher quality synthetic data for downstream tasks while keeping privacy of the real data.
Abstract:Summary: The vast generation of genetic data poses a significant challenge in efficiently uncovering valuable knowledge. Introducing GENEVIC, an AI-driven chat framework that tackles this challenge by bridging the gap between genetic data generation and biomedical knowledge discovery. Leveraging generative AI, notably ChatGPT, it serves as a biologist's 'copilot'. It automates the analysis, retrieval, and visualization of customized domain-specific genetic information, and integrates functionalities to generate protein interaction networks, enrich gene sets, and search scientific literature from PubMed, Google Scholar, and arXiv, making it a comprehensive tool for biomedical research. In its pilot phase, GENEVIC is assessed using a curated database that ranks genetic variants associated with Alzheimer's disease, schizophrenia, and cognition, based on their effect weights from the Polygenic Score Catalog, thus enabling researchers to prioritize genetic variants in complex diseases. GENEVIC's operation is user-friendly, accessible without any specialized training, secured by Azure OpenAI's HIPAA-compliant infrastructure, and evaluated for its efficacy through real-time query testing. As a prototype, GENEVIC is set to advance genetic research, enabling informed biomedical decisions. Availability and implementation: GENEVIC is publicly accessible at https://genevic-anath2024.streamlit.app. The underlying code is open-source and available via GitHub at https://github.com/anath2110/GENEVIC.git.
Abstract:For sharing privacy-sensitive data, de-identification is commonly regarded as adequate for safeguarding privacy. Synthetic data is also being considered as a privacy-preserving alternative. Recent successes with numerical and tabular data generative models and the breakthroughs in large generative language models raise the question of whether synthetically generated clinical notes could be a viable alternative to real notes for research purposes. In this work, we demonstrated that (i) de-identification of real clinical notes does not protect records against a membership inference attack, (ii) proposed a novel approach to generate synthetic clinical notes using the current state-of-the-art large language models, (iii) evaluated the performance of the synthetically generated notes in a clinical domain task, and (iv) proposed a way to mount a membership inference attack where the target model is trained with synthetic data. We observed that when synthetically generated notes closely match the performance of real data, they also exhibit similar privacy concerns to the real data. Whether other approaches to synthetically generated clinical notes could offer better trade-offs and become a better alternative to sensitive real notes warrants further investigation.
Abstract:This study aimed to utilize text processing and natural language processing (NLP) models to mine clinical notes for the diagnosis of periodontitis and to evaluate the performance of a named entity recognition (NER) model on different regular expression (RE) methods. Two complexity levels of RE methods were used to extract and generate the training data. The SpaCy package and RoBERTa transformer models were used to build the NER model and evaluate its performance with the manual-labeled gold standards. The comparison of the RE methods with the gold standard showed that as the complexity increased in the RE algorithms, the F1 score increased from 0.3-0.4 to around 0.9. The NER models demonstrated excellent predictions, with the simple RE method showing 0.84-0.92 in the evaluation metrics, and the advanced and combined RE method demonstrating 0.95-0.99 in the evaluation. This study provided an example of the benefit of combining NER methods and NLP models in extracting target information from free-text to structured data and fulfilling the need for missing diagnoses from unstructured notes.
Abstract:This study explored the usability of prompt generation on named entity recognition (NER) tasks and the performance in different settings of the prompt. The prompt generation by GPT-J models was utilized to directly test the gold standard as well as to generate the seed and further fed to the RoBERTa model with the spaCy package. In the direct test, a lower ratio of negative examples with higher numbers of examples in prompt achieved the best results with a F1 score of 0.72. The performance revealed consistency, 0.92-0.97 in the F1 score, in all settings after training with the RoBERTa model. The study highlighted the importance of seed quality rather than quantity in feeding NER models. This research reports on an efficient and accurate way to mine clinical notes for periodontal diagnoses, allowing researchers to easily and quickly build a NER model with the prompt generation approach.