Abstract:This research addresses the issue of missing structured data in dental records by extracting diagnostic information from unstructured text. The updated periodontology classification system's complexity has increased incomplete or missing structured diagnoses. To tackle this, we use advanced AI and NLP methods, leveraging GPT-4 to generate synthetic notes for fine-tuning a RoBERTa model. This significantly enhances the model's ability to understand medical and dental language. We evaluated the model using 120 randomly selected clinical notes from two datasets, demonstrating its improved diagnostic extraction accuracy. The results showed high accuracy in diagnosing periodontal status, stage, and grade, with Site 1 scoring 0.99 and Site 2 scoring 0.98. In the subtype category, Site 2 achieved perfect scores, outperforming Site 1. This method enhances extraction accuracy and broadens its use across dental contexts. The study underscores AI and NLP's transformative impact on healthcare delivery and management. Integrating AI and NLP technologies enhances documentation and simplifies administrative tasks by precisely extracting complex clinical information. This approach effectively addresses challenges in dental diagnostics. Using synthetic training data from LLMs optimizes the training process, improving accuracy and efficiency in identifying periodontal diagnoses from clinical notes. This innovative method holds promise for broader healthcare applications, potentially improving patient care quality.
Abstract:This study aimed to utilize text processing and natural language processing (NLP) models to mine clinical notes for the diagnosis of periodontitis and to evaluate the performance of a named entity recognition (NER) model on different regular expression (RE) methods. Two complexity levels of RE methods were used to extract and generate the training data. The SpaCy package and RoBERTa transformer models were used to build the NER model and evaluate its performance with the manual-labeled gold standards. The comparison of the RE methods with the gold standard showed that as the complexity increased in the RE algorithms, the F1 score increased from 0.3-0.4 to around 0.9. The NER models demonstrated excellent predictions, with the simple RE method showing 0.84-0.92 in the evaluation metrics, and the advanced and combined RE method demonstrating 0.95-0.99 in the evaluation. This study provided an example of the benefit of combining NER methods and NLP models in extracting target information from free-text to structured data and fulfilling the need for missing diagnoses from unstructured notes.
Abstract:This study explored the usability of prompt generation on named entity recognition (NER) tasks and the performance in different settings of the prompt. The prompt generation by GPT-J models was utilized to directly test the gold standard as well as to generate the seed and further fed to the RoBERTa model with the spaCy package. In the direct test, a lower ratio of negative examples with higher numbers of examples in prompt achieved the best results with a F1 score of 0.72. The performance revealed consistency, 0.92-0.97 in the F1 score, in all settings after training with the RoBERTa model. The study highlighted the importance of seed quality rather than quantity in feeding NER models. This research reports on an efficient and accurate way to mine clinical notes for periodontal diagnoses, allowing researchers to easily and quickly build a NER model with the prompt generation approach.
Abstract:Abstract: Aim: The goal was to use a Deep Convolutional Neural Network to measure the radiographic alveolar bone level to aid periodontal diagnosis. Material and methods: A Deep Learning (DL) model was developed by integrating three segmentation networks (bone area, tooth, cementoenamel junction) and image analysis to measure the radiographic bone level and assign radiographic bone loss (RBL) stages. The percentage of RBL was calculated to determine the stage of RBL for each tooth. A provisional periodontal diagnosis was assigned using the 2018 periodontitis classification. RBL percentage, staging, and presumptive diagnosis were compared to the measurements and diagnoses made by the independent examiners. Results: The average Dice Similarity Coefficient (DSC) for segmentation was over 0.91. There was no significant difference in RBL percentage measurements determined by DL and examiners (p=0.65). The Area Under the Receiver Operating Characteristics Curve of RBL stage assignment for stage I, II and III was 0.89, 0.90 and 0.90, respectively. The accuracy of the case diagnosis was 0.85. Conclusion: The proposed DL model provides reliable RBL measurements and image-based periodontal diagnosis using periapical radiographic images. However, this model has to be further optimized and validated by a larger number of images to facilitate its application.