Abstract:Recommender systems have been actively studied and applied in various domains to deal with information overload. Although there are numerous studies on recommender systems for movies, music, and e-commerce, comparatively less attention has been paid to the recommender system for NFTs despite the continuous growth of the NFT market. This paper presents a recommender system for NFTs that utilizes a variety of data sources, from NFT transaction records to external item features, to generate precise recommendations that cater to individual preferences. We develop a data-efficient graph-based recommender system to efficiently capture the complex relationship between each item and users and generate node(item) embeddings which incorporate both node feature information and graph structure. Furthermore, we exploit inputs beyond user-item interactions, such as image feature, text feature, and price feature. Numerical experiments verify the performance of the graph-based recommender system improves significantly after utilizing all types of item features as side information, thereby outperforming all other baselines.
Abstract:This paper explores the utilization of Temporal Graph Networks (TGN) for financial anomaly detection, a pressing need in the era of fintech and digitized financial transactions. We present a comprehensive framework that leverages TGN, capable of capturing dynamic changes in edges within financial networks, for fraud detection. Our study compares TGN's performance against static Graph Neural Network (GNN) baselines, as well as cutting-edge hypergraph neural network baselines using DGraph dataset for a realistic financial context. Our results demonstrate that TGN significantly outperforms other models in terms of AUC metrics. This superior performance underlines TGN's potential as an effective tool for detecting financial fraud, showcasing its ability to adapt to the dynamic and complex nature of modern financial systems. We also experimented with various graph embedding modules within the TGN framework and compared the effectiveness of each module. In conclusion, we demonstrated that, even with variations within TGN, it is possible to achieve good performance in the anomaly detection task.
Abstract:Recommender systems, crucial for user engagement on platforms like e-commerce and streaming services, often lag behind users' evolving preferences due to static data reliance. After Temporal Graph Networks (TGNs) were proposed, various studies have shown that TGN can significantly improve situations where the features of nodes and edges dynamically change over time. However, despite its promising capabilities, it has not been directly applied in recommender systems to date. Our study bridges this gap by directly implementing Temporal Graph Networks (TGN) in recommender systems, a first in this field. Using real-world datasets and a range of graph and history embedding methods, we show TGN's adaptability, confirming its effectiveness in dynamic recommendation scenarios.
Abstract:Recommender systems have become essential tools for enhancing user experiences across various domains. While extensive research has been conducted on recommender systems for movies, music, and e-commerce, the rapidly growing and economically significant Non-Fungible Token (NFT) market remains underexplored. The unique characteristics and increasing prominence of the NFT market highlight the importance of developing tailored recommender systems to cater to its specific needs and unlock its full potential. In this paper, we examine the distinctive characteristics of NFTs and propose the first recommender system specifically designed to address NFT market challenges. In specific, we develop a Multi-Attention Recommender System for NFTs (NFT-MARS) with three key characteristics: (1) graph attention to handle sparse user-item interactions, (2) multi-modal attention to incorporate feature preference of users, and (3) multi-task learning to consider the dual nature of NFTs as both artwork and financial assets. We demonstrate the effectiveness of NFT-MARS compared to various baseline models using the actual transaction data of NFTs collected directly from blockchain for four of the most popular NFT collections. The source code and data are available at https://anonymous.4open.science/r/RecSys2023-93ED.