Abstract:A vast amount of scholarly work is published daily, yet much of it remains inaccessible to the general public due to dense jargon and complex language. To address this challenge in science communication, we introduce a reinforcement learning framework that fine-tunes a language model to rewrite scholarly abstracts into more comprehensible versions. Guided by a carefully balanced combination of word- and sentence-level accessibility rewards, our language model effectively substitutes technical terms with more accessible alternatives, a task which models supervised fine-tuned or guided by conventional readability measures struggle to accomplish. Our best model adjusts the readability level of scholarly abstracts by approximately six U.S. grade levels -- in other words, from a postgraduate to a high school level. This translates to roughly a 90% relative boost over the supervised fine-tuning baseline, all while maintaining factual accuracy and high-quality language. An in-depth analysis of our approach shows that balanced rewards lead to systematic modifications in the base model, likely contributing to smoother optimization and superior performance. We envision this work as a step toward bridging the gap between scholarly research and the general public, particularly younger readers and those without a college degree.
Abstract:Graph foundation models (GFMs) have recently gained significant attention. However, the unique data processing and evaluation setups employed by different studies hinder a deeper understanding of their progress. Additionally, current research tends to focus on specific subsets of graph learning tasks, such as structural tasks, node-level tasks, or classification tasks. As a result, they often incorporate specialized modules tailored to particular task types, losing their applicability to other graph learning tasks and contradicting the original intent of foundation models to be universal. Therefore, to enhance consistency, coverage, and diversity across domains, tasks, and research interests within the graph learning community in the evaluation of GFMs, we propose GFMBench-a systematic and comprehensive benchmark comprising 26 datasets. Moreover, we introduce LangGFM, a novel GFM that relies entirely on large language models. By revisiting and exploring the effective graph textualization principles, as well as repurposing successful techniques from graph augmentation and graph self-supervised learning within the language space, LangGFM achieves performance on par with or exceeding the state of the art across GFMBench, which can offer us new perspectives, experiences, and baselines to drive forward the evolution of GFMs.
Abstract:User Satisfaction Estimation is an important task and increasingly being applied in goal-oriented dialogue systems to estimate whether the user is satisfied with the service. It is observed that whether the user's needs are met often triggers various sentiments, which can be pertinent to the successful estimation of user satisfaction, and vice versa. Thus, User Satisfaction Estimation (USE) and Sentiment Analysis (SA) should be treated as a joint, collaborative effort, considering the strong connections between the sentiment states of speakers and the user satisfaction. Existing joint learning frameworks mainly unify the two highly pertinent tasks over cascade or shared-bottom implementations, however they fail to distinguish task-specific and common features, which will produce sub-optimal utterance representations for downstream tasks. In this paper, we propose a novel Speaker Turn-Aware Multi-Task Adversarial Network (STMAN) for dialogue-level USE and utterance-level SA. Specifically, we first introduce a multi-task adversarial strategy which trains a task discriminator to make utterance representation more task-specific, and then utilize a speaker-turn aware multi-task interaction strategy to extract the common features which are complementary to each task. Extensive experiments conducted on two real-world service dialogue datasets show that our model outperforms several state-of-the-art methods.
Abstract:Large Language Models (LLMs) have demonstrated exceptional capabilities in understanding and generating natural language. However, their high deployment costs often pose a barrier to practical applications, especially. Cascading local and server models offers a promising solution to this challenge. While existing studies on LLM cascades have primarily focused on the performance-cost trade-off, real-world scenarios often involve more complex requirements. This paper introduces a novel LLM Cascade strategy with Multi-Objective Optimization, enabling LLM cascades to consider additional objectives (e.g., privacy) and better align with the specific demands of real-world applications while maintaining their original cascading abilities. Extensive experiments on three benchmarks validate the effectiveness and superiority of our approach.
Abstract:Large Language Models (LLMs) could struggle to fully understand legal theories and perform complex legal reasoning tasks. In this study, we introduce a challenging task (confusing charge prediction) to better evaluate LLMs' understanding of legal theories and reasoning capabilities. We also propose a novel framework: Multi-Agent framework for improving complex Legal Reasoning capability (MALR). MALR employs non-parametric learning, encouraging LLMs to automatically decompose complex legal tasks and mimic human learning process to extract insights from legal rules, helping LLMs better understand legal theories and enhance their legal reasoning abilities. Extensive experiments on multiple real-world datasets demonstrate that the proposed framework effectively addresses complex reasoning issues in practical scenarios, paving the way for more reliable applications in the legal domain.
Abstract:The rapid development of LLMs brings both convenience and potential threats. As costumed and private LLMs are widely applied, model copyright protection has become important. Text watermarking is emerging as a promising solution to AI-generated text detection and model protection issues. However, current text watermarks have largely ignored the critical need for injecting different watermarks for different users, which could help attribute the watermark to a specific individual. In this paper, we explore the personalized text watermarking scheme for LLM copyright protection and other scenarios, ensuring accountability and traceability in content generation. Specifically, we propose a novel text watermarking method PersonaMark that utilizes sentence structure as the hidden medium for the watermark information and optimizes the sentence-level generation algorithm to minimize disruption to the model's natural generation process. By employing a personalized hashing function to inject unique watermark signals for different users, personalized watermarked text can be obtained. Since our approach performs on sentence level instead of token probability, the text quality is highly preserved. The injection process of unique watermark signals for different users is time-efficient for a large number of users with the designed multi-user hashing function. As far as we know, we achieved personalized text watermarking for the first time through this. We conduct an extensive evaluation of four different LLMs in terms of perplexity, sentiment polarity, alignment, readability, etc. The results demonstrate that our method maintains performance with minimal perturbation to the model's behavior, allows for unbiased insertion of watermark information, and exhibits strong watermark recognition capabilities.
Abstract:Retrieval-Augmented Generation (RAG) is applied to solve hallucination problems and real-time constraints of large language models, but it also induces vulnerabilities against retrieval corruption attacks. Existing research mainly explores the unreliability of RAG in white-box and closed-domain QA tasks. In this paper, we aim to reveal the vulnerabilities of Retrieval-Enhanced Generative (RAG) models when faced with black-box attacks for opinion manipulation. We explore the impact of such attacks on user cognition and decision-making, providing new insight to enhance the reliability and security of RAG models. We manipulate the ranking results of the retrieval model in RAG with instruction and use these results as data to train a surrogate model. By employing adversarial retrieval attack methods to the surrogate model, black-box transfer attacks on RAG are further realized. Experiments conducted on opinion datasets across multiple topics show that the proposed attack strategy can significantly alter the opinion polarity of the content generated by RAG. This demonstrates the model's vulnerability and, more importantly, reveals the potential negative impact on user cognition and decision-making, making it easier to mislead users into accepting incorrect or biased information.
Abstract:The integration of generative Large Language Models (LLMs) into various applications, including the legal domain, has been accelerated by their expansive and versatile nature. However, when facing a legal case, users without a legal background often struggle to formulate professional queries and may inadvertently overlook critical legal factors when presenting their case narrative to LLMs. To address this issue, we propose the Diagnostic Legal Large Language Model (D3LM), which utilizes adaptive lawyer-like diagnostic questions to collect additional case information and then provides high-quality feedback. D3LM incorporates an innovative graph-based Positive-Unlabeled Reinforcement Learning (PURL) algorithm, enabling the generation of critical questions and enhancing user-LLM interactions. Moreover, an integrated LLM-based stopping criterion facilitates precise Court Views Generation (CVG). Our research also introduces a new English-language CVG dataset based on the US case law database, enriching the realm of LLM research and deployment with a vital dimension. D3LM surpasses classical LLMs by delivering outstanding performance and a remarkable user experience in the legal domain.
Abstract:The widespread use of pre-trained language models (PLMs) in natural language processing (NLP) has greatly improved performance outcomes. However, these models' vulnerability to adversarial attacks (e.g., camouflaged hints from drug dealers), particularly in the Chinese language with its rich character diversity/variation and complex structures, hatches vital apprehension. In this study, we propose a novel method, CHinese vAriatioN Graph Enhancement (CHANGE), to increase the robustness of PLMs against character variation attacks in Chinese content. CHANGE presents a novel approach for incorporating a Chinese character variation graph into the PLMs. Through designing different supplementary tasks utilizing the graph structure, CHANGE essentially enhances PLMs' interpretation of adversarially manipulated text. Experiments conducted in a multitude of NLP tasks show that CHANGE outperforms current language models in combating against adversarial attacks and serves as a valuable contribution to robust language model research. These findings contribute to the groundwork on robust language models and highlight the substantial potential of graph-guided pre-training strategies for real-world applications.
Abstract:Evaluating large language models (LLMs) is fundamental, particularly in the context of practical applications. Conventional evaluation methods, typically designed primarily for LLM development, yield numerical scores that ignore the user experience. Therefore, our study shifts the focus from model-centered to human-centered evaluation in the context of AI-powered writing assistance applications. Our proposed metric, termed ``Revision Distance,'' utilizes LLMs to suggest revision edits that mimic the human writing process. It is determined by counting the revision edits generated by LLMs. Benefiting from the generated revision edit details, our metric can provide a self-explained text evaluation result in a human-understandable manner beyond the context-independent score. Our results show that for the easy-writing task, ``Revision Distance'' is consistent with established metrics (ROUGE, Bert-score, and GPT-score), but offers more insightful, detailed feedback and better distinguishes between texts. Moreover, in the context of challenging academic writing tasks, our metric still delivers reliable evaluations where other metrics tend to struggle. Furthermore, our metric also holds significant potential for scenarios lacking reference texts.