Abstract:Achieving a delicate balance between fostering trust in law en- forcement and protecting the rights of both officers and civilians continues to emerge as a pressing research and product challenge in the world today. In the pursuit of fairness and transparency, this study presents an innovative AI-driven system designed to generate police report drafts from complex, noisy, and multi-role dialogue data. Our approach intelligently extracts key elements of law enforcement interactions and includes them in the draft, producing structured narratives that are not only high in quality but also reinforce accountability and procedural clarity. This frame- work holds the potential to transform the reporting process, ensur- ing greater oversight, consistency, and fairness in future policing practices. A demonstration video of our system can be accessed at https://drive.google.com/file/d/1kBrsGGR8e3B5xPSblrchRGj-Y-kpCHNO/view?usp=sharing
Abstract:In this paper, we investigate a new approach to Population, Intervention and Outcome (PIO) element detection, a common task in Evidence Based Medicine (EBM). The purpose of this study is two-fold: to build a training dataset for PIO element detection with minimum redundancy and ambiguity and to investigate possible options in utilizing state of the art embedding methods for the task of PIO element detection. For the former purpose, we build a new and improved dataset by investigating the shortcomings of previously released datasets. For the latter purpose, we leverage the state of the art text embedding, Bidirectional Encoder Representations from Transformers (BERT), and build a multi-label classifier. We show that choosing a domain specific pre-trained embedding further optimizes the performance of the classifier. Furthermore, we show that the model could be enhanced by using ensemble methods and boosting techniques provided that features are adequately chosen.