Abstract:Achieving a delicate balance between fostering trust in law en- forcement and protecting the rights of both officers and civilians continues to emerge as a pressing research and product challenge in the world today. In the pursuit of fairness and transparency, this study presents an innovative AI-driven system designed to generate police report drafts from complex, noisy, and multi-role dialogue data. Our approach intelligently extracts key elements of law enforcement interactions and includes them in the draft, producing structured narratives that are not only high in quality but also reinforce accountability and procedural clarity. This frame- work holds the potential to transform the reporting process, ensur- ing greater oversight, consistency, and fairness in future policing practices. A demonstration video of our system can be accessed at https://drive.google.com/file/d/1kBrsGGR8e3B5xPSblrchRGj-Y-kpCHNO/view?usp=sharing
Abstract:Conversational agents are exploding in popularity. However, much work remains in the area of non goal-oriented conversations, despite significant growth in research interest over recent years. To advance the state of the art in conversational AI, Amazon launched the Alexa Prize, a 2.5-million dollar university competition where sixteen selected university teams built conversational agents to deliver the best social conversational experience. Alexa Prize provided the academic community with the unique opportunity to perform research with a live system used by millions of users. The subjectivity associated with evaluating conversations is key element underlying the challenge of building non-goal oriented dialogue systems. In this paper, we propose a comprehensive evaluation strategy with multiple metrics designed to reduce subjectivity by selecting metrics which correlate well with human judgement. The proposed metrics provide granular analysis of the conversational agents, which is not captured in human ratings. We show that these metrics can be used as a reasonable proxy for human judgment. We provide a mechanism to unify the metrics for selecting the top performing agents, which has also been applied throughout the Alexa Prize competition. To our knowledge, to date it is the largest setting for evaluating agents with millions of conversations and hundreds of thousands of ratings from users. We believe that this work is a step towards an automatic evaluation process for conversational AIs.