Abstract:Unmanned aerial vehicles (UAVs) assisted Internet of things (IoT) systems have become an important part of future wireless communications. To achieve higher communication rate, the joint design of UAV trajectory and resource allocation is crucial. This letter considers a scenario where a multi-antenna UAV is dispatched to simultaneously collect data from multiple ground IoT nodes (GNs) within a time interval. To improve the sum data collection (SDC) volume, i.e., the total data volume transmitted by the GNs, the UAV trajectory, the UAV receive beamforming, the scheduling of the GNs, and the transmit power of the GNs are jointly optimized. Since the problem is non-convex and the optimization variables are highly coupled, it is hard to solve using traditional optimization methods. To find a near-optimal solution, a double-loop structured optimization-driven deep reinforcement learning (DRL) algorithm and a fully DRL-based algorithm are proposed to solve the problem effectively. Simulation results verify that the proposed algorithms outperform two benchmarks with significant improvement in SDC volumes.
Abstract:Recently, the integration of mobile edge computing (MEC) and generative artificial intelligence (GAI) technology has given rise to a new area called mobile edge generation and computing (MEGC), which offers mobile users heterogeneous services such as task computing and content generation. In this letter, we investigate the joint communication, computation, and the AIGC resource allocation problem in an MEGC system. A latency minimization problem is first formulated to enhance the quality of service for mobile users. Due to the strong coupling of the optimization variables, we propose a new deep reinforcement learning-based algorithm to solve it efficiently. Numerical results demonstrate that the proposed algorithm can achieve lower latency than two baseline algorithms.
Abstract:This paper investigates a movable-antenna (MA) array empowered integrated sensing and communications (ISAC) over low-altitude platform (LAP) system to support low-altitude economy (LAE) applications. In the considered system, an unmanned aerial vehicle (UAV) is dispatched to hover in the air, working as the UAV-enabled LAP (ULAP) to provide information transmission and sensing simultaneously for LAE applications. To improve the throughput capacity, we formulate a data rate maximization problem by jointly optimizing the transmit information and sensing beamforming and the antenna positions of the MA array. Since the data rate maximization problem is non-convex with highly coupled variables, we propose an efficient alternation optimization based algorithm, which iteratively optimizes parts of the variables while fixing others. Numerical results show the superiority of the proposed MA array-based scheme in terms of the achievable data rate and beamforming gain compared with two benchmark schemes.
Abstract:Intelligent reflecting surface (IRS) and rate-splitting multiple access (RSMA) technologies are at the forefront of enhancing spectrum and energy efficiency in the next generation multi-antenna communication systems. This paper explores a RSMA system with multiple IRSs, and proposes two purpose-driven scheduling schemes, i.e., the exhaustive IRS-aided (EIA) and opportunistic IRS-aided (OIA) schemes. The aim is to optimize the system weighted energy efficiency (EE) under the above two schemes, respectively. Specifically, the Dinkelbach, branch and bound, successive convex approximation, and the semidefinite relaxation methods are exploited within the alternating optimization framework to obtain effective solutions to the considered problems. The numerical findings indicate that the EIA scheme exhibits better performance compared to the OIA scheme in diverse scenarios when considering the weighted EE, and the proposed algorithm demonstrates superior performance in comparison to the baseline algorithms.
Abstract:Recently, movable antenna (MA) array becomes a promising technology for improving the communication quality in wireless communication systems. In this letter, an unmanned aerial vehicle (UAV) enabled multi-user multi-input-single-output system enhanced by the MA array is investigated. To enhance the throughput capacity, we aim to maximize the achievable data rate by jointly optimizing the transmit beamforming, the UAV trajectory, and the positions of the MA array antennas. The formulated data rate maximization problem is a highly coupled non-convex problem, for which an alternating optimization based algorithm is proposed to get a sub-optimal solution. Numerical results have demonstrated the performance gain of the proposed method compared with conventional method with fixed-position antenna array.
Abstract:Signal detection and modulation classification are two crucial tasks in various wireless communication systems. Different from prior works that investigate them independently, this paper studies the joint signal detection and automatic modulation classification (AMC) by considering a realistic and complex scenario, in which multiple signals with different modulation schemes coexist at different carrier frequencies. We first generate a coexisting RADIOML dataset (CRML23) to facilitate the joint design. Different from the publicly available AMC dataset ignoring the signal detection step and containing only one signal, our synthetic dataset covers the more realistic multiple-signal coexisting scenario. Then, we present a joint framework for detection and classification (JDM) for such a multiple-signal coexisting environment, which consists of two modules for signal detection and AMC, respectively. In particular, these two modules are interconnected using a designated data structure called "proposal". Finally, we conduct extensive simulations over the newly developed dataset, which demonstrate the effectiveness of our designs. Our code and dataset are now available as open-source (https://github.com/Singingkettle/ChangShuoRadioData).
Abstract:We study the problem of transfer learning, observing that previous efforts to understand its information-theoretic limits do not fully exploit the geometric structure of the source and target domains. In contrast, our study first illustrates the benefits of incorporating a natural geometric structure within a linear regression model, which corresponds to the generalized eigenvalue problem formed by the Gram matrices of both domains. We next establish a finite-sample minimax lower bound, propose a refined model interpolation estimator that enjoys a matching upper bound, and then extend our framework to multiple source domains and generalized linear models. Surprisingly, as long as information is available on the distance between the source and target parameters, negative-transfer does not occur. Simulation studies show that our proposed interpolation estimator outperforms state-of-the-art transfer learning methods in both moderate- and high-dimensional settings.
Abstract:Missing time-series data is a prevalent practical problem. Imputation methods in time-series data often are applied to the full panel data with the purpose of training a model for a downstream out-of-sample task. For example, in finance, imputation of missing returns may be applied prior to training a portfolio optimization model. Unfortunately, this practice may result in a look-ahead-bias in the future performance on the downstream task. There is an inherent trade-off between the look-ahead-bias of using the full data set for imputation and the larger variance in the imputation from using only the training data. By connecting layers of information revealed in time, we propose a Bayesian posterior consensus distribution which optimally controls the variance and look-ahead-bias trade-off in the imputation. We demonstrate the benefit of our methodology both in synthetic and real financial data.
Abstract:We consider the parameter estimation problem of a probabilistic generative model prescribed using a natural exponential family of distributions. For this problem, the typical maximum likelihood estimator usually overfits under limited training sample size, is sensitive to noise and may perform poorly on downstream predictive tasks. To mitigate these issues, we propose a distributionally robust maximum likelihood estimator that minimizes the worst-case expected log-loss uniformly over a parametric Kullback-Leibler ball around a parametric nominal distribution. Leveraging the analytical expression of the Kullback-Leibler divergence between two distributions in the same natural exponential family, we show that the min-max estimation problem is tractable in a broad setting, including the robust training of generalized linear models. Our novel robust estimator also enjoys statistical consistency and delivers promising empirical results in both regression and classification tasks.
Abstract:This paper shows that dropout training in Generalized Linear Models is the minimax solution of a two-player, zero-sum game where an adversarial nature corrupts a statistician's covariates using a multiplicative nonparametric errors-in-variables model. In this game---known as a Distributionally Robust Optimization problem---nature's least favorable distribution is dropout noise, where nature independently deletes entries of the covariate vector with some fixed probability $\delta$. Our decision-theoretic analysis shows that dropout training---the statistician's minimax strategy in the game---indeed provides out-of-sample expected loss guarantees for distributions that arise from multiplicative perturbations of in-sample data. This paper also provides a novel, parallelizable, Unbiased Multi-Level Monte Carlo algorithm to speed-up the implementation of dropout training. Our algorithm has a much smaller computational cost compared to the naive implementation of dropout, provided the number of data points is much smaller than the dimension of the covariate vector.