Abstract:With the rapid development of low-altitude applications, there is an increasing demand for low-altitude wireless networks (LAWNs) to simultaneously achieve high-rate communication, precise sensing, and reliable control in the low-altitude airspace. In this paper, we first present a typical system architecture of LAWNs, which integrates three core functionalities: communication, sensing, and control. Subsequently, we explore the promising prospects of movable antenna (MA)-assisted wireless communications, with emphasis on its potential in flexible beamforming, interference management, and spatial multiplexing gain. Furthermore, we elaborate on the integrated communication, sensing, and control capabilities enabled by MAs in LAWNs, and illustrate their effectiveness through representative examples. A case study demonstrates that MA-enabled LAWNs achieve significant performance improvements over traditional fixed-position antenna-based LAWNs in terms of communication throughput, sensing accuracy, and control stability. Finally, we outline several promising directions for future research, including the MA-assisted unmanned aerial vehicle (UAV) communication/sensing, the MA-assisted reliable control, and the MA-enhanced physical layer security.
Abstract:Emerging as a cornerstone for next-generation wireless networks, integrated sensing and communication (ISAC) systems demand innovative solutions to balance spectral efficiency and sensing accuracy. In this paper, we propose a coordinated beamforming framework for a reconfigurable intelligent surface (RIS)-empowered ISAC system, where the active precoding at the dual-functional base station (DFBS) and the passive beamforming at the RIS are jointly optimized to provide communication services for legitimate unmanned aerial vehicles (UAVs) while sensing the unauthorized UAVs. The sum-rate of all legitimate UAVs are maximized, while satisfying the radar sensing signal-to-noise ratio requirements, the transmit power constraints, and the reflection coefficients of the RIS. To address the inherent non-convexity from coupled variables, we propose a low-complexity algorithm integrating fractional programming with alternating optimization, featuring convergence guarantees. Numerical results demonstrate that the proposed algorithm achieves higher data rate compared to disjoint optimization benchmarks. This underscores RIS's pivotal role in harmonizing communication and target sensing functionalities for low-altitude networks.
Abstract:This paper investigates an integrated sensing, communication, and computing system deployed over low-altitude networks for enabling applications within the low-altitude economy. In the considered system, a full-duplex enabled unmanned aerial vehicle (UAV) is dispatched in the airspace, functioning as a UAV-enabled low-altitude platform (ULAP). The ULAP is capable of achieving simultaneous information transmission, target sensing, and mobile edge computing services. To reduce the overall energy consumption of the system while meeting the sensing beampattern threshold and user computation requirements, we formulate an energy consumption minimization problem by jointly optimizing the task allocation, computation resource allocation, transmit beamforming, and receive beamforming. Since the problem is non-convex and involves highly coupled variables, we propose an efficient algorithm based on alternation optimization, which decomposes the original problem into tractable convex subproblems. Moreover, we analyze the convergence and complexity of the proposed algorithm. Numerical results demonstrate that the proposed scheme saves up to 54.12\% energy consumption performance compared to the benchmark schemes.
Abstract:The rise of large language models has opened new avenues for users seeking legal advice. However, users often lack professional legal knowledge, which can lead to questions that omit critical information. This deficiency makes it challenging for traditional legal question-answering systems to accurately identify users' actual needs, often resulting in imprecise or generalized advice. In this work, we develop a legal question-answering system called Intelligent Legal Assistant, which interacts with users to precisely capture their needs. When a user poses a question, the system requests that the user select their geographical location to pinpoint the applicable laws. It then generates clarifying questions and options based on the key information missing from the user's initial question. This allows the user to select and provide the necessary details. Once all necessary information is provided, the system produces an in-depth legal analysis encompassing three aspects: overall conclusion, jurisprudential analysis, and resolution suggestions.
Abstract:The rapid evolution of mobile edge computing (MEC) has introduced significant challenges in optimizing resource allocation in highly dynamic wireless communication systems, in which task offloading decisions should be made in real-time. However, existing resource allocation strategies cannot well adapt to the dynamic and heterogeneous characteristics of MEC systems, since they are short of scalability, context-awareness, and interpretability. To address these issues, this paper proposes a novel retrieval-augmented generation (RAG) method to improve the performance of MEC systems. Specifically, a latency minimization problem is first proposed to jointly optimize the data offloading ratio, transmit power allocation, and computing resource allocation. Then, an LLM-enabled information-retrieval mechanism is proposed to solve the problem efficiently. Extensive experiments across multi-user, multi-task, and highly dynamic offloading scenarios show that the proposed method consistently reduces latency compared to several DL-based approaches, achieving 57% improvement under varying user computing ability, 86% with different servers, 30% under distinct transmit powers, and 42% for varying data volumes. These results show the effectiveness of LLM-driven solutions to solve the resource allocation problems in MEC systems.
Abstract:Federated learning (FL) has emerged as a pivotal solution for training machine learning models over wireless networks, particularly for Internet of Things (IoT) devices with limited computation resources. Despite its benefits, the efficiency of FL is often restricted by the communication quality between IoT devices and the central server. To address this issue, we introduce an innovative approach by deploying an unmanned aerial vehicle (UAV) as a mobile FL server to enhance the training process of FL. By leveraging the UAV's maneuverability, we establish robust line-of-sight connections with IoT devices, significantly improving communication capacity. To improve the overall training efficiency, we formulate a latency minimization problem by jointly optimizing the bandwidth allocation, computing frequencies, transmit power for both the UAV and IoT devices, and the UAV's trajectory. Then, an efficient alternating optimization algorithm is developed to solve it efficiently. Furthermore, we analyze the convergence and computational complexity of the proposed algorithm. Finally, numerical results demonstrate that our proposed scheme not only outperforms existing benchmark schemes in terms of latency but also achieves training efficiency that closely approximate the ideal scenario.
Abstract:Intelligent reflecting surface (IRS)-assisted mobile edge computing (MEC) systems have shown notable improvements in efficiency, such as reduced latency, higher data rates, and better energy efficiency. However, the resource competition among users will lead to uneven allocation, increased latency, and lower throughput. Fortunately, the rate-splitting multiple access (RSMA) technique has emerged as a promising solution for managing interference and optimizing resource allocation in MEC systems. This paper studies an IRS-assisted MEC system with RSMA, aiming to jointly optimize the passive beamforming of the IRS, the active beamforming of the base station, the task offloading allocation, the transmit power of users, the ratios of public and private information allocation, and the decoding order of the RSMA to minimize the average delay from a novel uplink transmission perspective. Since the formulated problem is non-convex and the optimization variables are highly coupled, we propose a hierarchical deep reinforcement learning-based algorithm to optimize both continuous and discrete variables of the problem. Additionally, to better extract channel features, we design a novel network architecture within the policy and evaluation networks of the proposed algorithm, combining convolutional neural networks and densely connected convolutional network for feature extraction. Simulation results indicate that the proposed algorithm not only exhibits excellent convergence performance but also outperforms various benchmarks.
Abstract:Unmanned aerial vehicles (UAVs) assisted Internet of things (IoT) systems have become an important part of future wireless communications. To achieve higher communication rate, the joint design of UAV trajectory and resource allocation is crucial. This letter considers a scenario where a multi-antenna UAV is dispatched to simultaneously collect data from multiple ground IoT nodes (GNs) within a time interval. To improve the sum data collection (SDC) volume, i.e., the total data volume transmitted by the GNs, the UAV trajectory, the UAV receive beamforming, the scheduling of the GNs, and the transmit power of the GNs are jointly optimized. Since the problem is non-convex and the optimization variables are highly coupled, it is hard to solve using traditional optimization methods. To find a near-optimal solution, a double-loop structured optimization-driven deep reinforcement learning (DRL) algorithm and a fully DRL-based algorithm are proposed to solve the problem effectively. Simulation results verify that the proposed algorithms outperform two benchmarks with significant improvement in SDC volumes.
Abstract:Recently, the integration of mobile edge computing (MEC) and generative artificial intelligence (GAI) technology has given rise to a new area called mobile edge generation and computing (MEGC), which offers mobile users heterogeneous services such as task computing and content generation. In this letter, we investigate the joint communication, computation, and the AIGC resource allocation problem in an MEGC system. A latency minimization problem is first formulated to enhance the quality of service for mobile users. Due to the strong coupling of the optimization variables, we propose a new deep reinforcement learning-based algorithm to solve it efficiently. Numerical results demonstrate that the proposed algorithm can achieve lower latency than two baseline algorithms.
Abstract:This paper investigates a movable-antenna (MA) array empowered integrated sensing and communications (ISAC) over low-altitude platform (LAP) system to support low-altitude economy (LAE) applications. In the considered system, an unmanned aerial vehicle (UAV) is dispatched to hover in the air, working as the UAV-enabled LAP (ULAP) to provide information transmission and sensing simultaneously for LAE applications. To improve the throughput capacity, we formulate a data rate maximization problem by jointly optimizing the transmit information and sensing beamforming and the antenna positions of the MA array. Since the data rate maximization problem is non-convex with highly coupled variables, we propose an efficient alternation optimization based algorithm, which iteratively optimizes parts of the variables while fixing others. Numerical results show the superiority of the proposed MA array-based scheme in terms of the achievable data rate and beamforming gain compared with two benchmark schemes.