Abstract:Predicting typhoon intensity accurately across space and time is crucial for issuing timely disaster warnings and facilitating emergency response. This has vast potential for minimizing life losses and property damages as well as reducing economic and environmental impacts. Leveraging satellite imagery for scenario analysis is effective but also introduces additional challenges due to the complex relations among clouds and the highly dynamic context. Existing deep learning methods in this domain rely on convolutional neural networks (CNNs), which suffer from limited per-layer receptive fields. This limitation hinders their ability to capture long-range dependencies and global contextual knowledge during inference. In response, we introduce a novel approach, namely "Typhoon Intensity Transformer" (Tint), which leverages self-attention mechanisms with global receptive fields per layer. Tint adopts a sequence-to-sequence feature representation learning perspective. It begins by cutting a given satellite image into a sequence of patches and recursively employs self-attention operations to extract both local and global contextual relations between all patch pairs simultaneously, thereby enhancing per-patch feature representation learning. Extensive experiments on a publicly available typhoon benchmark validate the efficacy of Tint in comparison with both state-of-the-art deep learning and conventional meteorological methods. Our code is available at https://github.com/chen-huanxin/Tint.
Abstract:Cloud analysis is a critical component of weather and climate science, impacting various sectors like disaster management. However, achieving fine-grained cloud analysis, such as cloud segmentation, in remote sensing remains challenging due to the inherent difficulties in obtaining accurate labels, leading to significant labeling errors in training data. Existing methods often assume the availability of reliable segmentation annotations, limiting their overall performance. To address this inherent limitation, we introduce an innovative model-agnostic Cloud Adaptive-Labeling (CAL) approach, which operates iteratively to enhance the quality of training data annotations and consequently improve the performance of the learned model. Our methodology commences by training a cloud segmentation model using the original annotations. Subsequently, it introduces a trainable pixel intensity threshold for adaptively labeling the cloud training images on the fly. The newly generated labels are then employed to fine-tune the model. Extensive experiments conducted on multiple standard cloud segmentation benchmarks demonstrate the effectiveness of our approach in significantly boosting the performance of existing segmentation models. Our CAL method establishes new state-of-the-art results when compared to a wide array of existing alternatives.