Abstract:Over the past decade, significant advances have been made in the field of image search for e-commerce applications. Traditional image-to-image retrieval models, which focus solely on image details such as texture, tend to overlook useful semantic information contained within the images. As a result, the retrieved products might possess similar image details, but fail to fulfil the user's search goals. Moreover, the use of image-to-image retrieval models for products containing multiple images results in significant online product feature storage overhead and complex mapping implementations. In this paper, we report the design and deployment of the proposed Multi-modal Item Embedding Model (MIEM) to address these limitations. It is capable of utilizing both textual information and multiple images about a product to construct meaningful product features. By leveraging semantic information from images, MIEM effectively supplements the image search process, improving the overall accuracy of retrieval results. MIEM has become an integral part of the Shopee image search platform. Since its deployment in March 2023, it has achieved a remarkable 9.90% increase in terms of clicks per user and a 4.23% boost in terms of orders per user for the image search feature on the Shopee e-commerce platform.
Abstract:Temporal graphs offer more accurate modeling of many real-world scenarios than static graphs. However, neighbor aggregation, a critical building block of graph networks, for temporal graphs, is currently straightforwardly extended from that of static graphs. It can be computationally expensive when involving all historical neighbors during such aggregation. In practice, typically only a subset of the most recent neighbors are involved. However, such subsampling leads to incomplete and biased neighbor information. To address this limitation, we propose a novel framework for temporal neighbor aggregation that uses the recurrent neural network with node-wise hidden states to integrate information from all historical neighbors for each node to acquire the complete neighbor information. We demonstrate the superior theoretical expressiveness of the proposed framework as well as its state-of-the-art performance in real-world applications. Notably, it achieves a significant +9.6% improvement on averaged precision in a real-world Ecommerce dataset over existing methods on 2-layer models.
Abstract:In recent years, recommender systems have advanced rapidly, where embedding learning for users and items plays a critical role. A standard method learns a unique embedding vector for each user and item. However, such a method has two important limitations in real-world applications: 1) it is hard to learn embeddings that generalize well for users and items with rare interactions on their own; and 2) it may incur unbearably high memory costs when the number of users and items scales up. Existing approaches either can only address one of the limitations or have flawed overall performances. In this paper, we propose Clustered Embedding Learning (CEL) as an integrated solution to these two problems. CEL is a plug-and-play embedding learning framework that can be combined with any differentiable feature interaction model. It is capable of achieving improved performance, especially for cold users and items, with reduced memory cost. CEL enables automatic and dynamic clustering of users and items in a top-down fashion, where clustered entities jointly learn a shared embedding. The accelerated version of CEL has an optimal time complexity, which supports efficient online updates. Theoretically, we prove the identifiability and the existence of a unique optimal number of clusters for CEL in the context of nonnegative matrix factorization. Empirically, we validate the effectiveness of CEL on three public datasets and one business dataset, showing its consistently superior performance against current state-of-the-art methods. In particular, when incorporating CEL into the business model, it brings an improvement of $+0.6\%$ in AUC, which translates into a significant revenue gain; meanwhile, the size of the embedding table gets $2650$ times smaller.
Abstract:Recommender Systems (RSs) in real-world applications often deal with billions of user interactions daily. To capture the most recent trends effectively, it is common to update the model incrementally using only the newly arrived data. However, this may impede the model's ability to retain long-term information due to the potential overfitting and forgetting issues. To address this problem, we propose a novel Adaptive Sequential Model Generation (ASMG) framework, which generates a better serving model from a sequence of historical models via a meta generator. For the design of the meta generator, we propose to employ Gated Recurrent Units (GRUs) to leverage its ability to capture the long-term dependencies. We further introduce some novel strategies to apply together with the GRU meta generator, which not only improve its computational efficiency but also enable more accurate sequential modeling. By instantiating the model-agnostic framework on a general deep learning-based RS model, we demonstrate that our method achieves state-of-the-art performance on three public datasets and one industrial dataset.
Abstract:With the rapid development of E-commerce and the increase in the quantity of items, users are presented with more items hence their interests broaden. It is increasingly difficult to model user intentions with traditional methods, which model the user's preference for an item by combining a single user vector and an item vector. Recently, some methods are proposed to generate multiple user interest vectors and achieve better performance compared to traditional methods. However, empirical studies demonstrate that vectors generated from these multi-interests methods are sometimes homogeneous, which may lead to sub-optimal performance. In this paper, we propose a novel method of Diversity Regularized Interests Modeling (DRIM) for Recommender Systems. We apply a capsule network in a multi-interest extractor to generate multiple user interest vectors. Each interest of the user should have a certain degree of distinction, thus we introduce three strategies as the diversity regularized separator to separate multiple user interest vectors. Experimental results on public and industrial data sets demonstrate the ability of the model to capture different interests of a user and the superior performance of the proposed approach.
Abstract:User behavior modeling is a key technique for recommender systems. However, most methods focus on head users with large-scale interactions and hence suffer from data sparsity issues. Several solutions integrate side information such as demographic features and product reviews, another is to transfer knowledge from other rich data sources. We argue that current methods are limited by the strict privacy policy and have low scalability in real-world applications and few works consider the behavioral characteristics behind long-tailed users. In this work, we propose the Hybrid Interest Modeling (HIM) network to hybrid both personalized interest and semi-personalized interest in learning long-tailed users' preferences in the recommendation. To achieve this, we first design the User Behavior Pyramid (UBP) module to capture the fine-grained personalized interest of high confidence from sparse even noisy positive feedbacks. Moreover, the individual interaction is too sparse and not enough for modeling user interest adequately, we design the User Behavior Clustering (UBC) module to learn latent user interest groups with self-supervised learning mechanism novelly, which capture coarse-grained semi-personalized interest from group-item interaction data. Extensive experiments on both public and industrial datasets verify the superiority of HIM compared with the state-of-the-art baselines.
Abstract:Estimating post-click conversion rate (CVR) accurately is crucial in E-commerce. However, CVR prediction usually suffers from three major challenges in practice: i) data sparsity: compared with impressions, conversion samples are often extremely scarce; ii) sample selection bias: conventional CVR models are trained with clicked impressions while making inference on the entire space of all impressions; iii) delayed feedback: many conversions can only be observed after a relatively long and random delay since clicks happened, resulting in many false negative labels during training. Previous studies mainly focus on one or two issues while ignoring the others. In this paper, we propose a novel neural network framework ESDF to tackle the above three challenges simultaneously. Unlike existing methods, ESDF models the CVR prediction from a perspective of entire space, and combines the advantage of user sequential behavior pattern and the time delay factor. Specifically, ESDF utilizes sequential behavior of user actions on the entire space with all impressions to alleviate the sample selection bias problem. By sharing the embedding parameters between CTR and CVR networks, data sparsity problem is greatly relieved. Different from conventional delayed feedback methods, ESDF does not make any special assumption about the delay distribution. We discretize the delay time by day slot and model the probability based on survival analysis with deep neural network, which is more practical and suitable for industrial situations. Extensive experiments are conducted to evaluate the effectiveness of our method. To the best of our knowledge, ESDF is the first attempt to unitedly solve the above three challenges in CVR prediction area.
Abstract:The slate re-ranking problem considers the mutual influences between items to improve user satisfaction in e-commerce, compared with the point-wise ranking. Previous works either directly rank items by an end to end model, or rank items by a score function that trades-off the point-wise score and the diversity between items. However, there are two main existing challenges that are not well studied: (1) the evaluation of the slate is hard due to the complex mutual influences between items of one slate; (2) even given the optimal evaluation, searching the optimal slate is challenging as the action space is exponentially large. In this paper, we present a novel Generator and Critic slate re-ranking approach, where the Critic evaluates the slate and the Generator ranks the items by the reinforcement learning approach. We propose a Full Slate Critic (FSC) model that considers the real impressed items and avoids the impressed bias of existing models. For the Generator, to tackle the problem of large action space, we propose a new exploration reinforcement learning algorithm, called PPO-Exploration. Experimental results show that the FSC model significantly outperforms the state of the art slate evaluation methods, and the PPO-Exploration algorithm outperforms the existing reinforcement learning methods substantially. The Generator and Critic approach improves both the slate efficiency(4% gmv and 5% number of orders) and diversity in live experiments on one of the largest e-commerce websites in the world.
Abstract:Session based model is widely used in recommend system. It use the user click sequence as input of a Recurrent Neural Network (RNN), and get the output of the RNN network as the vector embedding of the session, and use the inner product of the vector embedding of session and the vector embedding of the next item as the score that is the metric of the interest to the next item. This method can be used for the "match" stage for the recommendation system whose item number is very big by using some index method like KD-Tree or Ball-Tree and etc.. But this method repudiate the variousness of the interest of user in a session. We generated the model to modify the vector embedding of session to a symmetric matrix embedding, that is equivalent to a quadratic form on the vector space of items. The score is builded as the value of the vector embedding of next item under the quadratic form. The eigenvectors of the symmetric matrix embedding corresponding to the positive eigenvalues are conjectured to represent the interests of user in the session. This method can be used for the "match" stage also. The experiments show that this method is better than the method of vector embedding.
Abstract:Learning interpretable disentangled representations is a crucial yet challenging task. In this paper, we propose a weakly semi-supervised method, termed as Dual Swap Disentangling (DSD), for disentangling using both labeled and unlabeled data. Unlike conventional weakly supervised methods that rely on full annotations on the group of samples, we require only limited annotations on paired samples that indicate their shared attribute like the color. Our model takes the form of a dual autoencoder structure. To achieve disentangling using the labeled pairs, we follow a "encoding-swap-decoding" process, where we first swap the parts of their encodings corresponding to the shared attribute and then decode the obtained hybrid codes to reconstruct the original input pairs. For unlabeled pairs, we follow the "encoding-swap-decoding" process twice on designated encoding parts and enforce the final outputs to approximate the input pairs. By isolating parts of the encoding and swapping them back and forth, we impose the dimension-wise modularity and portability of the encodings of the unlabeled samples, which implicitly encourages disentangling under the guidance of labeled pairs. This dual swap mechanism, tailored for semi-supervised setting, turns out to be very effective. Experiments on image datasets from a wide domain show that our model yields state-of-the-art disentangling performances.