Abstract:AI agents have the potential to aid users on a variety of consequential tasks, including conducting scientific research. To spur the development of useful agents, we need benchmarks that are challenging, but more crucially, directly correspond to real-world tasks of interest. This paper introduces such a benchmark, designed to measure the accuracy of AI agents in tackling a crucial yet surprisingly challenging aspect of scientific research: computational reproducibility. This task, fundamental to the scientific process, involves reproducing the results of a study using the provided code and data. We introduce CORE-Bench (Computational Reproducibility Agent Benchmark), a benchmark consisting of 270 tasks based on 90 scientific papers across three disciplines (computer science, social science, and medicine). Tasks in CORE-Bench consist of three difficulty levels and include both language-only and vision-language tasks. We provide an evaluation system to measure the accuracy of agents in a fast and parallelizable way, saving days of evaluation time for each run compared to a sequential implementation. We evaluated two baseline agents: the general-purpose AutoGPT and a task-specific agent called CORE-Agent. We tested both variants using two underlying language models: GPT-4o and GPT-4o-mini. The best agent achieved an accuracy of 21% on the hardest task, showing the vast scope for improvement in automating routine scientific tasks. Having agents that can reproduce existing work is a necessary step towards building agents that can conduct novel research and could verify and improve the performance of other research agents. We hope that CORE-Bench can improve the state of reproducibility and spur the development of future research agents.
Abstract:Foundation models are increasingly consequential yet extremely opaque. To characterize the status quo, the Foundation Model Transparency Index was launched in October 2023 to measure the transparency of leading foundation model developers. The October 2023 Index (v1.0) assessed 10 major foundation model developers (e.g. OpenAI, Google) on 100 transparency indicators (e.g. does the developer disclose the wages it pays for data labor?). At the time, developers publicly disclosed very limited information with the average score being 37 out of 100. To understand how the status quo has changed, we conduct a follow-up study (v1.1) after 6 months: we score 14 developers against the same 100 indicators. While in v1.0 we searched for publicly available information, in v1.1 developers submit reports on the 100 transparency indicators, potentially including information that was not previously public. We find that developers now score 58 out of 100 on average, a 21 point improvement over v1.0. Much of this increase is driven by developers disclosing information during the v1.1 process: on average, developers disclosed information related to 16.6 indicators that was not previously public. We observe regions of sustained (i.e. across v1.0 and v1.1) and systemic (i.e. across most or all developers) opacity such as on copyright status, data access, data labor, and downstream impact. We publish transparency reports for each developer that consolidate information disclosures: these reports are based on the information disclosed to us via developers. Our findings demonstrate that transparency can be improved in this nascent ecosystem, the Foundation Model Transparency Index likely contributes to these improvements, and policymakers should consider interventions in areas where transparency has not improved.
Abstract:AI agents are an exciting new research direction, and agent development is driven by benchmarks. Our analysis of current agent benchmarks and evaluation practices reveals several shortcomings that hinder their usefulness in real-world applications. First, there is a narrow focus on accuracy without attention to other metrics. As a result, SOTA agents are needlessly complex and costly, and the community has reached mistaken conclusions about the sources of accuracy gains. Our focus on cost in addition to accuracy motivates the new goal of jointly optimizing the two metrics. We design and implement one such optimization, showing its potential to greatly reduce cost while maintaining accuracy. Second, the benchmarking needs of model and downstream developers have been conflated, making it hard to identify which agent would be best suited for a particular application. Third, many agent benchmarks have inadequate holdout sets, and sometimes none at all. This has led to agents that are fragile because they take shortcuts and overfit to the benchmark in various ways. We prescribe a principled framework for avoiding overfitting. Finally, there is a lack of standardization in evaluation practices, leading to a pervasive lack of reproducibility. We hope that the steps we introduce for addressing these shortcomings will spur the development of agents that are useful in the real world and not just accurate on benchmarks.
Abstract:Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications. To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet: a growing collection of 250+ tools and resources spanning text, vision, and speech modalities. We draw on a large body of prior work to survey resources (e.g. software, documentation, frameworks, guides, and practical tools) that support informed data selection, processing, and understanding, precise and limitation-aware artifact documentation, efficient model training, advance awareness of the environmental impact from training, careful model evaluation of capabilities, risks, and claims, as well as responsible model release, licensing and deployment practices. We hope this curated collection of resources helps guide more responsible development. The process of curating this list, enabled us to review the AI development ecosystem, revealing what tools are critically missing, misused, or over-used in existing practices. We find that (i) tools for data sourcing, model evaluation, and monitoring are critically under-serving ethical and real-world needs, (ii) evaluations for model safety, capabilities, and environmental impact all lack reproducibility and transparency, (iii) text and particularly English-centric analyses continue to dominate over multilingual and multi-modal analyses, and (iv) evaluation of systems, rather than just models, is needed so that capabilities and impact are assessed in context.
Abstract:Independent evaluation and red teaming are critical for identifying the risks posed by generative AI systems. However, the terms of service and enforcement strategies used by prominent AI companies to deter model misuse have disincentives on good faith safety evaluations. This causes some researchers to fear that conducting such research or releasing their findings will result in account suspensions or legal reprisal. Although some companies offer researcher access programs, they are an inadequate substitute for independent research access, as they have limited community representation, receive inadequate funding, and lack independence from corporate incentives. We propose that major AI developers commit to providing a legal and technical safe harbor, indemnifying public interest safety research and protecting it from the threat of account suspensions or legal reprisal. These proposals emerged from our collective experience conducting safety, privacy, and trustworthiness research on generative AI systems, where norms and incentives could be better aligned with public interests, without exacerbating model misuse. We believe these commitments are a necessary step towards more inclusive and unimpeded community efforts to tackle the risks of generative AI.
Abstract:Foundation models are powerful technologies: how they are released publicly directly shapes their societal impact. In this position paper, we focus on open foundation models, defined here as those with broadly available model weights (e.g. Llama 2, Stable Diffusion XL). We identify five distinctive properties (e.g. greater customizability, poor monitoring) of open foundation models that lead to both their benefits and risks. Open foundation models present significant benefits, with some caveats, that span innovation, competition, the distribution of decision-making power, and transparency. To understand their risks of misuse, we design a risk assessment framework for analyzing their marginal risk. Across several misuse vectors (e.g. cyberattacks, bioweapons), we find that current research is insufficient to effectively characterize the marginal risk of open foundation models relative to pre-existing technologies. The framework helps explain why the marginal risk is low in some cases, clarifies disagreements about misuse risks by revealing that past work has focused on different subsets of the framework with different assumptions, and articulates a way forward for more constructive debate. Overall, our work helps support a more grounded assessment of the societal impact of open foundation models by outlining what research is needed to empirically validate their theoretical benefits and risks.
Abstract:Foundation models are critical digital technologies with sweeping societal impact that necessitates transparency. To codify how foundation model developers should provide transparency about the development and deployment of their models, we propose Foundation Model Transparency Reports, drawing upon the transparency reporting practices in social media. While external documentation of societal harms prompted social media transparency reports, our objective is to institutionalize transparency reporting for foundation models while the industry is still nascent. To design our reports, we identify 6 design principles given the successes and shortcomings of social media transparency reporting. To further schematize our reports, we draw upon the 100 transparency indicators from the Foundation Model Transparency Index. Given these indicators, we measure the extent to which they overlap with the transparency requirements included in six prominent government policies (e.g., the EU AI Act, the US Executive Order on Safe, Secure, and Trustworthy AI). Well-designed transparency reports could reduce compliance costs, in part due to overlapping regulatory requirements across different jurisdictions. We encourage foundation model developers to regularly publish transparency reports, building upon recommendations from the G7 and the White House.
Abstract:Foundation models have rapidly permeated society, catalyzing a wave of generative AI applications spanning enterprise and consumer-facing contexts. While the societal impact of foundation models is growing, transparency is on the decline, mirroring the opacity that has plagued past digital technologies (e.g. social media). Reversing this trend is essential: transparency is a vital precondition for public accountability, scientific innovation, and effective governance. To assess the transparency of the foundation model ecosystem and help improve transparency over time, we introduce the Foundation Model Transparency Index. The Foundation Model Transparency Index specifies 100 fine-grained indicators that comprehensively codify transparency for foundation models, spanning the upstream resources used to build a foundation model (e.g data, labor, compute), details about the model itself (e.g. size, capabilities, risks), and the downstream use (e.g. distribution channels, usage policies, affected geographies). We score 10 major foundation model developers (e.g. OpenAI, Google, Meta) against the 100 indicators to assess their transparency. To facilitate and standardize assessment, we score developers in relation to their practices for their flagship foundation model (e.g. GPT-4 for OpenAI, PaLM 2 for Google, Llama 2 for Meta). We present 10 top-level findings about the foundation model ecosystem: for example, no developer currently discloses significant information about the downstream impact of its flagship model, such as the number of users, affected market sectors, or how users can seek redress for harm. Overall, the Foundation Model Transparency Index establishes the level of transparency today to drive progress on foundation model governance via industry standards and regulatory intervention.
Abstract:Machine learning (ML) methods are proliferating in scientific research. However, the adoption of these methods has been accompanied by failures of validity, reproducibility, and generalizability. These failures can hinder scientific progress, lead to false consensus around invalid claims, and undermine the credibility of ML-based science. ML methods are often applied and fail in similar ways across disciplines. Motivated by this observation, our goal is to provide clear reporting standards for ML-based science. Drawing from an extensive review of past literature, we present the REFORMS checklist ($\textbf{Re}$porting Standards $\textbf{For}$ $\textbf{M}$achine Learning Based $\textbf{S}$cience). It consists of 32 questions and a paired set of guidelines. REFORMS was developed based on a consensus of 19 researchers across computer science, data science, mathematics, social sciences, and biomedical sciences. REFORMS can serve as a resource for researchers when designing and implementing a study, for referees when reviewing papers, and for journals when enforcing standards for transparency and reproducibility.
Abstract:The use of machine learning (ML) methods for prediction and forecasting has become widespread across the quantitative sciences. However, there are many known methodological pitfalls, including data leakage, in ML-based science. In this paper, we systematically investigate reproducibility issues in ML-based science. We show that data leakage is indeed a widespread problem and has led to severe reproducibility failures. Specifically, through a survey of literature in research communities that adopted ML methods, we find 17 fields where errors have been found, collectively affecting 329 papers and in some cases leading to wildly overoptimistic conclusions. Based on our survey, we present a fine-grained taxonomy of 8 types of leakage that range from textbook errors to open research problems. We argue for fundamental methodological changes to ML-based science so that cases of leakage can be caught before publication. To that end, we propose model info sheets for reporting scientific claims based on ML models that would address all types of leakage identified in our survey. To investigate the impact of reproducibility errors and the efficacy of model info sheets, we undertake a reproducibility study in a field where complex ML models are believed to vastly outperform older statistical models such as Logistic Regression (LR): civil war prediction. We find that all papers claiming the superior performance of complex ML models compared to LR models fail to reproduce due to data leakage, and complex ML models don't perform substantively better than decades-old LR models. While none of these errors could have been caught by reading the papers, model info sheets would enable the detection of leakage in each case.