Abstract:To accurately and confidently answer the question 'could an AI model or system increase biorisk', it is necessary to have both a sound theoretical threat model for how AI models or systems could increase biorisk and a robust method for testing that threat model. This paper provides an analysis of existing available research surrounding two AI and biorisk threat models: 1) access to information and planning via large language models (LLMs), and 2) the use of AI-enabled biological tools (BTs) in synthesizing novel biological artifacts. We find that existing studies around AI-related biorisk are nascent, often speculative in nature, or limited in terms of their methodological maturity and transparency. The available literature suggests that current LLMs and BTs do not pose an immediate risk, and more work is needed to develop rigorous approaches to understanding how future models could increase biorisks. We end with recommendations about how empirical work can be expanded to more precisely target biorisk and ensure rigor and validity of findings.
Abstract:The systemic risks posed by general-purpose AI models are a growing concern, yet the effectiveness of mitigations remains underexplored. Previous research has proposed frameworks for risk mitigation, but has left gaps in our understanding of the perceived effectiveness of measures for mitigating systemic risks. Our study addresses this gap by evaluating how experts perceive different mitigations that aim to reduce the systemic risks of general-purpose AI models. We surveyed 76 experts whose expertise spans AI safety; critical infrastructure; democratic processes; chemical, biological, radiological, and nuclear risks (CBRN); and discrimination and bias. Among 27 mitigations identified through a literature review, we find that a broad range of risk mitigation measures are perceived as effective in reducing various systemic risks and technically feasible by domain experts. In particular, three mitigation measures stand out: safety incident reports and security information sharing, third-party pre-deployment model audits, and pre-deployment risk assessments. These measures show both the highest expert agreement ratings (>60\%) across all four risk areas and are most frequently selected in experts' preferred combinations of measures (>40\%). The surveyed experts highlighted that external scrutiny, proactive evaluation and transparency are key principles for effective mitigation of systemic risks. We provide policy recommendations for implementing the most promising measures, incorporating the qualitative contributions from experts. These insights should inform regulatory frameworks and industry practices for mitigating the systemic risks associated with general-purpose AI.
Abstract:Language models are extensively evaluated, but correctly interpreting evaluation results requires knowledge of train-test overlap which refers to the extent to which the language model is trained on the very data it is being tested on. The public currently lacks adequate information about train-test overlap: most models have no public train-test overlap statistics, and third parties cannot directly measure train-test overlap since they do not have access to the training data. To make this clear, we document the practices of 30 model developers, finding that just 9 developers report train-test overlap: 4 developers release training data under open-source licenses, enabling the community to directly measure train-test overlap, and 5 developers publish their train-test overlap methodology and statistics. By engaging with language model developers, we provide novel information about train-test overlap for three additional developers. Overall, we take the position that language model developers should publish train-test overlap statistics and/or training data whenever they report evaluation results on public test sets. We hope our work increases transparency into train-test overlap to increase the community-wide trust in model evaluations.
Abstract:Foundation models are increasingly consequential yet extremely opaque. To characterize the status quo, the Foundation Model Transparency Index was launched in October 2023 to measure the transparency of leading foundation model developers. The October 2023 Index (v1.0) assessed 10 major foundation model developers (e.g. OpenAI, Google) on 100 transparency indicators (e.g. does the developer disclose the wages it pays for data labor?). At the time, developers publicly disclosed very limited information with the average score being 37 out of 100. To understand how the status quo has changed, we conduct a follow-up study (v1.1) after 6 months: we score 14 developers against the same 100 indicators. While in v1.0 we searched for publicly available information, in v1.1 developers submit reports on the 100 transparency indicators, potentially including information that was not previously public. We find that developers now score 58 out of 100 on average, a 21 point improvement over v1.0. Much of this increase is driven by developers disclosing information during the v1.1 process: on average, developers disclosed information related to 16.6 indicators that was not previously public. We observe regions of sustained (i.e. across v1.0 and v1.1) and systemic (i.e. across most or all developers) opacity such as on copyright status, data access, data labor, and downstream impact. We publish transparency reports for each developer that consolidate information disclosures: these reports are based on the information disclosed to us via developers. Our findings demonstrate that transparency can be improved in this nascent ecosystem, the Foundation Model Transparency Index likely contributes to these improvements, and policymakers should consider interventions in areas where transparency has not improved.
Abstract:Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications. To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet: a growing collection of 250+ tools and resources spanning text, vision, and speech modalities. We draw on a large body of prior work to survey resources (e.g. software, documentation, frameworks, guides, and practical tools) that support informed data selection, processing, and understanding, precise and limitation-aware artifact documentation, efficient model training, advance awareness of the environmental impact from training, careful model evaluation of capabilities, risks, and claims, as well as responsible model release, licensing and deployment practices. We hope this curated collection of resources helps guide more responsible development. The process of curating this list, enabled us to review the AI development ecosystem, revealing what tools are critically missing, misused, or over-used in existing practices. We find that (i) tools for data sourcing, model evaluation, and monitoring are critically under-serving ethical and real-world needs, (ii) evaluations for model safety, capabilities, and environmental impact all lack reproducibility and transparency, (iii) text and particularly English-centric analyses continue to dominate over multilingual and multi-modal analyses, and (iv) evaluation of systems, rather than just models, is needed so that capabilities and impact are assessed in context.
Abstract:Independent evaluation and red teaming are critical for identifying the risks posed by generative AI systems. However, the terms of service and enforcement strategies used by prominent AI companies to deter model misuse have disincentives on good faith safety evaluations. This causes some researchers to fear that conducting such research or releasing their findings will result in account suspensions or legal reprisal. Although some companies offer researcher access programs, they are an inadequate substitute for independent research access, as they have limited community representation, receive inadequate funding, and lack independence from corporate incentives. We propose that major AI developers commit to providing a legal and technical safe harbor, indemnifying public interest safety research and protecting it from the threat of account suspensions or legal reprisal. These proposals emerged from our collective experience conducting safety, privacy, and trustworthiness research on generative AI systems, where norms and incentives could be better aligned with public interests, without exacerbating model misuse. We believe these commitments are a necessary step towards more inclusive and unimpeded community efforts to tackle the risks of generative AI.
Abstract:Foundation models are powerful technologies: how they are released publicly directly shapes their societal impact. In this position paper, we focus on open foundation models, defined here as those with broadly available model weights (e.g. Llama 2, Stable Diffusion XL). We identify five distinctive properties (e.g. greater customizability, poor monitoring) of open foundation models that lead to both their benefits and risks. Open foundation models present significant benefits, with some caveats, that span innovation, competition, the distribution of decision-making power, and transparency. To understand their risks of misuse, we design a risk assessment framework for analyzing their marginal risk. Across several misuse vectors (e.g. cyberattacks, bioweapons), we find that current research is insufficient to effectively characterize the marginal risk of open foundation models relative to pre-existing technologies. The framework helps explain why the marginal risk is low in some cases, clarifies disagreements about misuse risks by revealing that past work has focused on different subsets of the framework with different assumptions, and articulates a way forward for more constructive debate. Overall, our work helps support a more grounded assessment of the societal impact of open foundation models by outlining what research is needed to empirically validate their theoretical benefits and risks.
Abstract:Foundation models are critical digital technologies with sweeping societal impact that necessitates transparency. To codify how foundation model developers should provide transparency about the development and deployment of their models, we propose Foundation Model Transparency Reports, drawing upon the transparency reporting practices in social media. While external documentation of societal harms prompted social media transparency reports, our objective is to institutionalize transparency reporting for foundation models while the industry is still nascent. To design our reports, we identify 6 design principles given the successes and shortcomings of social media transparency reporting. To further schematize our reports, we draw upon the 100 transparency indicators from the Foundation Model Transparency Index. Given these indicators, we measure the extent to which they overlap with the transparency requirements included in six prominent government policies (e.g., the EU AI Act, the US Executive Order on Safe, Secure, and Trustworthy AI). Well-designed transparency reports could reduce compliance costs, in part due to overlapping regulatory requirements across different jurisdictions. We encourage foundation model developers to regularly publish transparency reports, building upon recommendations from the G7 and the White House.
Abstract:Foundation models have rapidly permeated society, catalyzing a wave of generative AI applications spanning enterprise and consumer-facing contexts. While the societal impact of foundation models is growing, transparency is on the decline, mirroring the opacity that has plagued past digital technologies (e.g. social media). Reversing this trend is essential: transparency is a vital precondition for public accountability, scientific innovation, and effective governance. To assess the transparency of the foundation model ecosystem and help improve transparency over time, we introduce the Foundation Model Transparency Index. The Foundation Model Transparency Index specifies 100 fine-grained indicators that comprehensively codify transparency for foundation models, spanning the upstream resources used to build a foundation model (e.g data, labor, compute), details about the model itself (e.g. size, capabilities, risks), and the downstream use (e.g. distribution channels, usage policies, affected geographies). We score 10 major foundation model developers (e.g. OpenAI, Google, Meta) against the 100 indicators to assess their transparency. To facilitate and standardize assessment, we score developers in relation to their practices for their flagship foundation model (e.g. GPT-4 for OpenAI, PaLM 2 for Google, Llama 2 for Meta). We present 10 top-level findings about the foundation model ecosystem: for example, no developer currently discloses significant information about the downstream impact of its flagship model, such as the number of users, affected market sectors, or how users can seek redress for harm. Overall, the Foundation Model Transparency Index establishes the level of transparency today to drive progress on foundation model governance via industry standards and regulatory intervention.
Abstract:Machine learning is traditionally studied at the model level: researchers measure and improve the accuracy, robustness, bias, efficiency, and other dimensions of specific models. In practice, the societal impact of machine learning is determined by the surrounding context of machine learning deployments. To capture this, we introduce ecosystem-level analysis: rather than analyzing a single model, we consider the collection of models that are deployed in a given context. For example, ecosystem-level analysis in hiring recognizes that a job candidate's outcomes are not only determined by a single hiring algorithm or firm but instead by the collective decisions of all the firms they applied to. Across three modalities (text, images, speech) and 11 datasets, we establish a clear trend: deployed machine learning is prone to systemic failure, meaning some users are exclusively misclassified by all models available. Even when individual models improve at the population level over time, we find these improvements rarely reduce the prevalence of systemic failure. Instead, the benefits of these improvements predominantly accrue to individuals who are already correctly classified by other models. In light of these trends, we consider medical imaging for dermatology where the costs of systemic failure are especially high. While traditional analyses reveal racial performance disparities for both models and humans, ecosystem-level analysis reveals new forms of racial disparity in model predictions that do not present in human predictions. These examples demonstrate ecosystem-level analysis has unique strengths for characterizing the societal impact of machine learning.