Abstract:Spread through air spaces (STAS) is a distinct invasion pattern in lung cancer, crucial for prognosis assessment and guiding surgical decisions. Histopathology is the gold standard for STAS detection, yet traditional methods are subjective, time-consuming, and prone to misdiagnosis, limiting large-scale applications. We present VERN, an image analysis model utilizing a feature-interactive Siamese graph encoder to predict STAS from lung cancer histopathological images. VERN captures spatial topological features with feature sharing and skip connections to enhance model training. Using 1,546 histopathology slides, we built a large single-cohort STAS lung cancer dataset. VERN achieved an AUC of 0.9215 in internal validation and AUCs of 0.8275 and 0.8829 in frozen and paraffin-embedded test sections, respectively, demonstrating clinical-grade performance. Validated on a single-cohort and three external datasets, VERN showed robust predictive performance and generalizability, providing an open platform (http://plr.20210706.xyz:5000/) to enhance STAS diagnosis efficiency and accuracy.
Abstract:Features (a.k.a. context) are critical for contextual multi-armed bandits (MAB) performance. In practice of large scale online system, it is important to select and implement important features for the model: missing important features can led to sub-optimal reward outcome, and including irrelevant features can cause overfitting, poor model interpretability, and implementation cost. However, feature selection methods for conventional machine learning models fail short for contextual MAB use cases, as conventional methods select features correlated with the outcome variable, but not necessarily causing heterogeneuous treatment effect among arms which are truely important for contextual MAB. In this paper, we introduce model-free feature selection methods designed for contexutal MAB problem, based on heterogeneous causal effect contributed by the feature to the reward distribution. Empirical evaluation is conducted based on synthetic data as well as real data from an online experiment for optimizing content cover image in a recommender system. The results show this feature selection method effectively selects the important features that lead to higher contextual MAB reward than unimportant features. Compared with model embedded method, this model-free method has advantage of fast computation speed, ease of implementation, and prune of model mis-specification issues.
Abstract:Influenced by ChatGPT, artificial intelligence (AI) large models have witnessed a global upsurge in large model research and development. As people enjoy the convenience by this AI large model, more and more large models in subdivided fields are gradually being proposed, especially large models in radiology imaging field. This article first introduces the development history of large models, technical details, workflow, working principles of multimodal large models and working principles of video generation large models. Secondly, we summarize the latest research progress of AI large models in radiology education, radiology report generation, applications of unimodal and multimodal radiology. Finally, this paper also summarizes some of the challenges of large AI models in radiology, with the aim of better promoting the rapid revolution in the field of radiography.
Abstract:In the domain of causal inference research, the prevalent potential outcomes framework, notably the Rubin Causal Model (RCM), often overlooks individual interference and assumes independent treatment effects. This assumption, however, is frequently misaligned with the intricate realities of real-world scenarios, where interference is not merely a possibility but a common occurrence. Our research endeavors to address this discrepancy by focusing on the estimation of direct and spillover treatment effects under two assumptions: (1) network-based interference, where treatments on neighbors within connected networks affect one's outcomes, and (2) non-random treatment assignments influenced by confounders. To improve the efficiency of estimating potentially complex effects functions, we introduce an novel active learning approach: Active Learning in Causal Inference with Interference (ACI). This approach uses Gaussian process to flexibly model the direct and spillover treatment effects as a function of a continuous measure of neighbors' treatment assignment. The ACI framework sequentially identifies the experimental settings that demand further data. It further optimizes the treatment assignments under the network interference structure using genetic algorithms to achieve efficient learning outcome. By applying our method to simulation data and a Tencent game dataset, we demonstrate its feasibility in achieving accurate effects estimations with reduced data requirements. This ACI approach marks a significant advancement in the realm of data efficiency for causal inference, offering a robust and efficient alternative to traditional methodologies, particularly in scenarios characterized by complex interference patterns.
Abstract:We introduce HiDiffusion, a tuning-free framework comprised of Resolution-Aware U-Net (RAU-Net) and Modified Shifted Window Multi-head Self-Attention (MSW-MSA) to enable pretrained large text-to-image diffusion models to efficiently generate high-resolution images (e.g. 1024$\times$1024) that surpass the training image resolution. Pretrained diffusion models encounter unreasonable object duplication in generating images beyond the training image resolution. We attribute it to the mismatch between the feature map size of high-resolution images and the receptive field of U-Net's convolution. To address this issue, we propose a simple yet scalable method named RAU-Net. RAU-Net dynamically adjusts the feature map size to match the convolution's receptive field in the deep block of U-Net. Another obstacle in high-resolution synthesis is the slow inference speed of U-Net. Our observations reveal that the global self-attention in the top block, which exhibits locality, however, consumes the majority of computational resources. To tackle this issue, we propose MSW-MSA. Unlike previous window attention mechanisms, our method uses a much larger window size and dynamically shifts windows to better accommodate diffusion models. Extensive experiments demonstrate that our HiDiffusion can scale diffusion models to generate 1024$\times$1024, 2048$\times$2048, or even 4096$\times$4096 resolution images, while simultaneously reducing inference time by 40\%-60\%, achieving state-of-the-art performance on high-resolution image synthesis. The most significant revelation of our work is that a pretrained diffusion model on low-resolution images is scalable for high-resolution generation without further tuning. We hope this revelation can provide insights for future research on the scalability of diffusion models.
Abstract:The in-circuit common-mode (CM) impedance at the AC input of a motor drive system (MDS) provides valuable inputs for evaluating and estimating the CM electromagnetic interference (EMI) noise generated by the switching of power semiconductor devices in the MDS. This paper introduces a single-probe setup (SPS) with frequency-domain measurement to extract the in-circuit CM impedance of a MDS under its different operating modes. The SPS has the merits of non-contact measurement and simple structure.
Abstract:Uplift modeling is a predictive modeling technique that estimates the user-level incremental effect of a treatment using machine learning models. It is often used for targeting promotions and advertisements, as well as for the personalization of product offerings. In these applications, there are often hundreds of features available to build such models. Keeping all the features in a model can be costly and inefficient. Feature selection is an essential step in the modeling process for multiple reasons: improving the estimation accuracy by eliminating irrelevant features, accelerating model training and prediction speed, reducing the monitoring and maintenance workload for feature data pipeline, and providing better model interpretation and diagnostics capability. However, feature selection methods for uplift modeling have been rarely discussed in the literature. Although there are various feature selection methods for standard machine learning models, we will demonstrate that those methods are sub-optimal for solving the feature selection problem for uplift modeling. To address this problem, we introduce a set of feature selection methods designed specifically for uplift modeling, including both filter methods and embedded methods. To evaluate the effectiveness of the proposed feature selection methods, we use different uplift models and measure the accuracy of each model with a different number of selected features. We use both synthetic and real data to conduct these experiments. We also implemented the proposed filter methods in an open source Python package (CausalML).
Abstract:CausalML is a Python implementation of algorithms related to causal inference and machine learning. Algorithms combining causal inference and machine learning have been a trending topic in recent years. This package tries to bridge the gap between theoretical work on methodology and practical applications by making a collection of methods in this field available in Python. This paper introduces the key concepts, scope, and use cases of this package.
Abstract:In machine learning applications for online product offerings and marketing strategies, there are often hundreds or thousands of features available to build such models. Feature selection is one essential method in such applications for multiple objectives: improving the prediction accuracy by eliminating irrelevant features, accelerating the model training and prediction speed, reducing the monitoring and maintenance workload for feature data pipeline, and providing better model interpretation and diagnosis capability. However, selecting an optimal feature subset from a large feature space is considered as an NP-complete problem. The mRMR (Minimum Redundancy and Maximum Relevance) feature selection framework solves this problem by selecting the relevant features while controlling for the redundancy within the selected features. This paper describes the approach to extend, evaluate, and implement the mRMR feature selection methods for classification problem in a marketing machine learning platform at Uber that automates creation and deployment of targeting and personalization models at scale. This study first extends the existing mRMR methods by introducing a non-linear feature redundancy measure and a model-based feature relevance measure. Then an extensive empirical evaluation is performed for eight different feature selection methods, using one synthetic dataset and three real-world marketing datasets at Uber to cover different use cases. Based on the empirical results, the selected mRMR method is implemented in production for the marketing machine learning platform. A description of the production implementation is provided and an online experiment deployed through the platform is discussed.
Abstract:Uplift modeling is an emerging machine learning approach for estimating the treatment effect at an individual or subgroup level. It can be used for optimizing the performance of interventions such as marketing campaigns and product designs. Uplift modeling can be used to estimate which users are likely to benefit from a treatment and then prioritize delivering or promoting the preferred experience to those users. An important but so far neglected use case for uplift modeling is an experiment with multiple treatment groups that have different costs, such as for example when different communication channels and promotion types are tested simultaneously. In this paper, we extend standard uplift models to support multiple treatment groups with different costs. We evaluate the performance of the proposed models using both synthetic and real data. We also describe a production implementation of the approach.