MaRS Laboratory, Dept. of Mechanical Engineering, The University of Hong Kong
Abstract:Deep learning is widely used to predict complex dynamical systems in many scientific and engineering areas. However, the black-box nature of these deep learning models presents significant challenges for carrying out simultaneous data assimilation (DA), which is a crucial technique for state estimation, model identification, and reconstructing missing data. Integrating ensemble-based DA methods with nonlinear deep learning models is computationally expensive and may suffer from large sampling errors. To address these challenges, we introduce a deep learning framework designed to simultaneously provide accurate forecasts and efficient DA. It is named Conditional Gaussian Koopman Network (CGKN), which transforms general nonlinear systems into nonlinear neural differential equations with conditional Gaussian structures. CGKN aims to retain essential nonlinear components while applying systematic and minimal simplifications to facilitate the development of analytic formulae for nonlinear DA. This allows for seamless integration of DA performance into the deep learning training process, eliminating the need for empirical tuning as required in ensemble methods. CGKN compensates for structural simplifications by lifting the dimension of the system, which is motivated by Koopman theory. Nevertheless, CGKN exploits special nonlinear dynamics within the lifted space. This enables the model to capture extreme events and strong non-Gaussian features in joint and marginal distributions with appropriate uncertainty quantification. We demonstrate the effectiveness of CGKN for both prediction and DA on three strongly nonlinear and non-Gaussian turbulent systems: the projected stochastic Burgers--Sivashinsky equation, the Lorenz 96 system, and the El Ni\~no-Southern Oscillation. The results justify the robustness and computational efficiency of CGKN.
Abstract:In recent years, the rapid aging of the global population has led to an increase in cognitive disorders, such as Alzheimer's disease, presenting significant public health challenges. Although no effective treatments currently exist to reverse Alzheimer's, prevention and early intervention, including cognitive training, are critical. This report explores the potential of AI chatbots in enhancing personalized cognitive training. We introduce ReMe, a web-based framework designed to create AI chatbots that facilitate cognitive training research, specifically targeting episodic memory tasks derived from personal life logs. By leveraging large language models, ReMe provides enhanced user-friendly, interactive, and personalized training experiences. Case studies demonstrate ReMe's effectiveness in engaging users through life recall and open-ended language puzzles, highlighting its potential to improve cognitive training design. Despite promising results, further research is needed to validate training effectiveness through large-scale studies that include cognitive ability evaluations. Overall, ReMe offers a promising approach to personalized cognitive training, utilizing AI capabilities to meet the growing demand for non-pharmacological interventions in cognitive health, with future research aiming to expand its applications and efficacy.
Abstract:Subject-driven text-to-image (T2I) customization has drawn significant interest in academia and industry. This task enables pre-trained models to generate novel images based on unique subjects. Existing studies adopt a self-reconstructive perspective, focusing on capturing all details of a single image, which will misconstrue the specific image's irrelevant attributes (e.g., view, pose, and background) as the subject intrinsic attributes. This misconstruction leads to both overfitting or underfitting of irrelevant and intrinsic attributes of the subject, i.e., these attributes are over-represented or under-represented simultaneously, causing a trade-off between similarity and controllability. In this study, we argue an ideal subject representation can be achieved by a cross-differential perspective, i.e., decoupling subject intrinsic attributes from irrelevant attributes via contrastive learning, which allows the model to focus more on intrinsic attributes through intra-consistency (features of the same subject are spatially closer) and inter-distinctiveness (features of different subjects have distinguished differences). Specifically, we propose CustomContrast, a novel framework, which includes a Multilevel Contrastive Learning (MCL) paradigm and a Multimodal Feature Injection (MFI) Encoder. The MCL paradigm is used to extract intrinsic features of subjects from high-level semantics to low-level appearance through crossmodal semantic contrastive learning and multiscale appearance contrastive learning. To facilitate contrastive learning, we introduce the MFI encoder to capture cross-modal representations. Extensive experiments show the effectiveness of CustomContrast in subject similarity and text controllability.
Abstract:We aim to learn the functional co-response group: a group of taxa whose co-response effect (the representative characteristic of the group) associates well statistically with a functional variable. Different from the state-of-the-art method, we model the soil microbial community as an ecological co-occurrence network with the taxa as nodes (weighted by their abundance) and their relationships (a combination from both spatial and functional ecological aspects) as edges (weighted by the strength of the relationships). Then, we design a method called gFlora which notably uses graph convolution over this co-occurrence network to get the co-response effect of the group, such that the network topology is also considered in the discovery process. We evaluate gFlora on two real-world soil microbiome datasets (bacteria and nematodes) and compare it with the state-of-the-art method. gFlora outperforms this on all evaluation metrics, and discovers new functional evidence for taxa which were so far under-studied. We show that the graph convolution step is crucial to taxa with low abundance, and the discovered bacteria of different genera are distributed in the co-occurrence network but still tightly connected among themselves, demonstrating that topologically they fill different but collaborative functional roles in the ecological community.
Abstract:Translating natural language to visualization (NL2VIS) has shown great promise for visual data analysis, but it remains a challenging task that requires multiple low-level implementations, such as natural language processing and visualization design. Recent advancements in pre-trained large language models (LLMs) are opening new avenues for generating visualizations from natural language. However, the lack of a comprehensive and reliable benchmark hinders our understanding of LLMs' capabilities in visualization generation. In this paper, we address this gap by proposing a new NL2VIS benchmark called VisEval. Firstly, we introduce a high-quality and large-scale dataset. This dataset includes 2,524 representative queries covering 146 databases, paired with accurately labeled ground truths. Secondly, we advocate for a comprehensive automated evaluation methodology covering multiple dimensions, including validity, legality, and readability. By systematically scanning for potential issues with a number of heterogeneous checkers, VisEval provides reliable and trustworthy evaluation outcomes. We run VisEval on a series of state-of-the-art LLMs. Our evaluation reveals prevalent challenges and delivers essential insights for future advancements.
Abstract:Enhancing the sparsity of data-driven reduced-order models (ROMs) has gained increasing attention in recent years. In this work, we analyze an efficient approach to identifying skillful ROMs with a sparse structure using an information-theoretic indicator called causation entropy. The causation entropy quantifies in a statistical way the additional contribution of each term to the underlying dynamics beyond the information already captured by all the other terms in the ansatz. By doing so, the causation entropy assesses the importance of each term to the dynamics before a parameter estimation procedure is performed. Thus, the approach can be utilized to eliminate terms with little dynamic impact, leading to a parsimonious structure that retains the essential physics. To circumvent the difficulty of estimating high-dimensional probability density functions (PDFs) involved in the causation entropy computation, we leverage Gaussian approximations for such PDFs, which are demonstrated to be sufficient even in the presence of highly non-Gaussian dynamics. The effectiveness of the approach is illustrated by the Kuramoto-Sivashinsky equation by building sparse causation-based ROMs for various purposes, such as recovering long-term statistics and inferring unobserved dynamics via data assimilation with partial observations.
Abstract:A new knowledge-based and machine learning hybrid modeling approach, called conditional Gaussian neural stochastic differential equation (CGNSDE), is developed to facilitate modeling complex dynamical systems and implementing analytic formulae of the associated data assimilation (DA). In contrast to the standard neural network predictive models, the CGNSDE is designed to effectively tackle both forward prediction tasks and inverse state estimation problems. The CGNSDE starts by exploiting a systematic causal inference via information theory to build a simple knowledge-based nonlinear model that nevertheless captures as much explainable physics as possible. Then, neural networks are supplemented to the knowledge-based model in a specific way, which not only characterizes the remaining features that are challenging to model with simple forms but also advances the use of analytic formulae to efficiently compute the nonlinear DA solution. These analytic formulae are used as an additional computationally affordable loss to train the neural networks that directly improve the DA accuracy. This DA loss function promotes the CGNSDE to capture the interactions between state variables and thus advances its modeling skills. With the DA loss, the CGNSDE is more capable of estimating extreme events and quantifying the associated uncertainty. Furthermore, crucial physical properties in many complex systems, such as the translate-invariant local dependence of state variables, can significantly simplify the neural network structures and facilitate the CGNSDE to be applied to high-dimensional systems. Numerical experiments based on chaotic systems with intermittency and strong non-Gaussian features indicate that the CGNSDE outperforms knowledge-based regression models, and the DA loss further enhances the modeling skills of the CGNSDE.
Abstract:In the era of data-driven decision-making, the complexity of data analysis necessitates advanced expertise and tools of data science, presenting significant challenges even for specialists. Large Language Models (LLMs) have emerged as promising aids as data science agents, assisting humans in data analysis and processing. Yet their practical efficacy remains constrained by the varied demands of real-world applications and complicated analytical process. In this paper, we introduce DSEval -- a novel evaluation paradigm, as well as a series of innovative benchmarks tailored for assessing the performance of these agents throughout the entire data science lifecycle. Incorporating a novel bootstrapped annotation method, we streamline dataset preparation, improve the evaluation coverage, and expand benchmarking comprehensiveness. Our findings uncover prevalent obstacles and provide critical insights to inform future advancements in the field.
Abstract:In the domain of causal inference research, the prevalent potential outcomes framework, notably the Rubin Causal Model (RCM), often overlooks individual interference and assumes independent treatment effects. This assumption, however, is frequently misaligned with the intricate realities of real-world scenarios, where interference is not merely a possibility but a common occurrence. Our research endeavors to address this discrepancy by focusing on the estimation of direct and spillover treatment effects under two assumptions: (1) network-based interference, where treatments on neighbors within connected networks affect one's outcomes, and (2) non-random treatment assignments influenced by confounders. To improve the efficiency of estimating potentially complex effects functions, we introduce an novel active learning approach: Active Learning in Causal Inference with Interference (ACI). This approach uses Gaussian process to flexibly model the direct and spillover treatment effects as a function of a continuous measure of neighbors' treatment assignment. The ACI framework sequentially identifies the experimental settings that demand further data. It further optimizes the treatment assignments under the network interference structure using genetic algorithms to achieve efficient learning outcome. By applying our method to simulation data and a Tencent game dataset, we demonstrate its feasibility in achieving accurate effects estimations with reduced data requirements. This ACI approach marks a significant advancement in the realm of data efficiency for causal inference, offering a robust and efficient alternative to traditional methodologies, particularly in scenarios characterized by complex interference patterns.
Abstract:Flow fields are often partitioned into data blocks for massively parallel computation and analysis based on blockwise relationships. However, most of the previous techniques only consider the first-order dependencies among blocks, which is insufficient in describing complex flow patterns. In this work, we present FlowHON, an approach to construct higher-order networks (HONs) from flow fields. FlowHON captures the inherent higher-order dependencies in flow fields as nodes and estimates the transitions among them as edges. We formulate the HON construction as an optimization problem with three linear transformations. The first two layers correspond to the node generation and the third one corresponds to edge estimation. Our formulation allows the node generation and edge estimation to be solved in a unified framework. With FlowHON, the rich set of traditional graph algorithms can be applied without any modification to analyze flow fields, while leveraging the higher-order information to understand the inherent structure and manage flow data for efficiency. We demonstrate the effectiveness of FlowHON using a series of downstream tasks, including estimating the density of particles during tracing, partitioning flow fields for data management, and understanding flow fields using the node-link diagram representation of networks.