Abstract:While interpretability research has shed light on some internal algorithms utilized by transformer-based LLMs, reasoning in natural language, with its deep contextuality and ambiguity, defies easy categorization. As a result, formulating clear and motivating questions for circuit analysis that rely on well-defined in-domain and out-of-domain examples required for causal interventions is challenging. Although significant work has investigated circuits for specific tasks, such as indirect object identification (IOI), deciphering natural language reasoning through circuits remains difficult due to its inherent complexity. In this work, we take initial steps to characterize causal reasoning in LLMs by analyzing clear-cut cause-and-effect sentences like "I opened an umbrella because it started raining," where causal interventions may be possible through carefully crafted scenarios using GPT-2 small. Our findings indicate that causal syntax is localized within the first 2-3 layers, while certain heads in later layers exhibit heightened sensitivity to nonsensical variations of causal sentences. This suggests that models may infer reasoning by (1) detecting syntactic cues and (2) isolating distinct heads in the final layers that focus on semantic relationships.
Abstract:Historical maps provide valuable information and knowledge about the past. However, as they often feature non-standard projections, hand-drawn styles, and artistic elements, it is challenging for non-experts to identify and interpret them. While existing image captioning methods have achieved remarkable success on natural images, their performance on maps is suboptimal as maps are underrepresented in their pre-training process. Despite the recent advance of GPT-4 in text recognition and map captioning, it still has a limited understanding of maps, as its performance wanes when texts (e.g., titles and legends) in maps are missing or inaccurate. Besides, it is inefficient or even impractical to fine-tune the model with users' own datasets. To address these problems, we propose a novel and lightweight map-captioning counterpart. Specifically, we fine-tune the state-of-the-art vision-language model CLIP to generate captions relevant to historical maps and enrich the captions with GPT-3.5 to tell a brief story regarding where, what, when and why of a given map. We propose a novel decision tree architecture to only generate captions relevant to the specified map type. Our system shows invariance to text alterations in maps. The system can be easily adapted and extended to other map types and scaled to a larger map captioning system. The code is open-sourced at https://github.com/claudaff/automatic-map-storytelling.
Abstract:We study the fundamental problem of sequential probability assignment, also known as online learning with logarithmic loss, with respect to an arbitrary, possibly nonparametric hypothesis class. Our goal is to obtain a complexity measure for the hypothesis class that characterizes the minimax regret and to determine a general, minimax optimal algorithm. Notably, the sequential $\ell_{\infty}$ entropy, extensively studied in the literature (Rakhlin and Sridharan, 2015, Bilodeau et al., 2020, Wu et al., 2023), was shown to not characterize minimax risk in general. Inspired by the seminal work of Shtarkov (1987) and Rakhlin, Sridharan, and Tewari (2010), we introduce a novel complexity measure, the \emph{contextual Shtarkov sum}, corresponding to the Shtarkov sum after projection onto a multiary context tree, and show that the worst case log contextual Shtarkov sum equals the minimax regret. Using the contextual Shtarkov sum, we derive the minimax optimal strategy, dubbed \emph{contextual Normalized Maximum Likelihood} (cNML). Our results hold for sequential experts, beyond binary labels, which are settings rarely considered in prior work. To illustrate the utility of this characterization, we provide a short proof of a new regret upper bound in terms of sequential $\ell_{\infty}$ entropy, unifying and sharpening state-of-the-art bounds by Bilodeau et al. (2020) and Wu et al. (2023).
Abstract:In this work, we investigate the problem of adapting to the presence or absence of causal structure in multi-armed bandit problems. In addition to the usual reward signal, we assume the learner has access to additional variables, observed in each round after acting. When these variables $d$-separate the action from the reward, existing work in causal bandits demonstrates that one can achieve strictly better (minimax) rates of regret (Lu et al., 2020). Our goal is to adapt to this favorable "conditionally benign" structure, if it is present in the environment, while simultaneously recovering worst-case minimax regret, if it is not. Notably, the learner has no prior knowledge of whether the favorable structure holds. In this paper, we establish the Pareto optimal frontier of adaptive rates. We prove upper and matching lower bounds on the possible trade-offs in the performance of learning in conditionally benign and arbitrary environments, resolving an open question raised by Bilodeau et al. (2022). Furthermore, we are the first to obtain instance-dependent bounds for causal bandits, by reducing the problem to the linear bandit setting. Finally, we examine the common assumption that the marginal distributions of the post-action contexts are known and show that a nontrivial estimate is necessary for better-than-worst-case minimax rates.
Abstract:Large language models (LLMs) have demonstrated the potential to mimic human social intelligence. However, most studies focus on simplistic and static self-report or performance-based tests, which limits the depth and validity of the analysis. In this paper, we developed a novel framework, InterIntent, to assess LLMs' social intelligence by mapping their ability to understand and manage intentions in a game setting. We focus on four dimensions of social intelligence: situational awareness, self-regulation, self-awareness, and theory of mind. Each dimension is linked to a specific game task: intention selection, intention following, intention summarization, and intention guessing. Our findings indicate that while LLMs exhibit high proficiency in selecting intentions, achieving an accuracy of 88\%, their ability to infer the intentions of others is significantly weaker, trailing human performance by 20\%. Additionally, game performance correlates with intention understanding, highlighting the importance of the four components towards success in this game. These findings underline the crucial role of intention understanding in evaluating LLMs' social intelligence and highlight the potential of using social deduction games as a complex testbed to enhance LLM evaluation. InterIntent contributes a structured approach to bridging the evaluation gap in social intelligence within multiplayer games.
Abstract:The wide deployment of Face Recognition (FR) systems poses risks of privacy leakage. One countermeasure to address this issue is adversarial attacks, which deceive malicious FR searches but simultaneously interfere the normal identity verification of trusted authorizers. In this paper, we propose the first Double Privacy Guard (DPG) scheme based on traceable adversarial watermarking. DPG employs a one-time watermark embedding to deceive unauthorized FR models and allows authorizers to perform identity verification by extracting the watermark. Specifically, we propose an information-guided adversarial attack against FR models. The encoder embeds an identity-specific watermark into the deep feature space of the carrier, guiding recognizable features of the image to deviate from the source identity. We further adopt a collaborative meta-optimization strategy compatible with sub-tasks, which regularizes the joint optimization direction of the encoder and decoder. This strategy enhances the representation of universal carrier features, mitigating multi-objective optimization conflicts in watermarking. Experiments confirm that DPG achieves significant attack success rates and traceability accuracy on state-of-the-art FR models, exhibiting remarkable robustness that outperforms the existing privacy protection methods using adversarial attacks and deep watermarking, or simple combinations of the two. Our work potentially opens up new insights into proactive protection for FR privacy.
Abstract:Weakly-supervised temporal action localization (WTAL) aims to recognize and localize action instances with only video-level labels. Despite the significant progress, existing methods suffer from severe performance degradation when transferring to different distributions and thus may hardly adapt to real-world scenarios . To address this problem, we propose the Generalizable Temporal Action Localization task (GTAL), which focuses on improving the generalizability of action localization methods. We observed that the performance decline can be primarily attributed to the lack of generalizability to different action scales. To address this problem, we propose STAT (Self-supervised Temporal Adaptive Teacher), which leverages a teacher-student structure for iterative refinement. Our STAT features a refinement module and an alignment module. The former iteratively refines the model's output by leveraging contextual information and helps adapt to the target scale. The latter improves the refinement process by promoting a consensus between student and teacher models. We conduct extensive experiments on three datasets, THUMOS14, ActivityNet1.2, and HACS, and the results show that our method significantly improves the Baseline methods under the cross-distribution evaluation setting, even approaching the same-distribution evaluation performance.
Abstract:Large language models (LLMs) have demonstrated impressive reasoning ability in various language-based tasks. Despite many proposed reasoning methods aimed at enhancing performance in downstream tasks, two fundamental questions persist: Does reasoning genuinely support predictions, and how reliable is the quality of reasoning? In this paper, we propose a framework \textsc{SCORE} to analyze how well LLMs can reason. Specifically, we focus on self-contradictory reasoning, where reasoning does not support the prediction. We find that LLMs often contradict themselves when performing reasoning tasks that involve contextual information and commonsense. The model may miss evidence or use shortcuts, thereby exhibiting self-contradictory behaviors. We also employ the Point-of-View (POV) method, which probes models to generate reasoning from multiple perspectives, as a diagnostic tool for further analysis. We find that though LLMs may appear to perform well in one-perspective settings, they fail to stabilize such behavior in multi-perspectives settings. Even for correct predictions, the reasoning may be messy and incomplete, and LLMs can easily be led astray from good reasoning. \textsc{SCORE}'s results underscore the lack of robustness required for trustworthy reasoning and the urgency for further research to establish best practices for a comprehensive evaluation of reasoning beyond accuracy-based metrics.
Abstract:The malicious applications of deep forgery, represented by face swapping, have introduced security threats such as misinformation dissemination and identity fraud. While some research has proposed the use of robust watermarking methods to trace the copyright of facial images for post-event traceability, these methods cannot effectively prevent the generation of forgeries at the source and curb their dissemination. To address this problem, we propose a novel comprehensive active defense mechanism that combines traceability and adversariality, called Dual Defense. Dual Defense invisibly embeds a single robust watermark within the target face to actively respond to sudden cases of malicious face swapping. It disrupts the output of the face swapping model while maintaining the integrity of watermark information throughout the entire dissemination process. This allows for watermark extraction at any stage of image tracking for traceability. Specifically, we introduce a watermark embedding network based on original-domain feature impersonation attack. This network learns robust adversarial features of target facial images and embeds watermarks, seeking a well-balanced trade-off between watermark invisibility, adversariality, and traceability through perceptual adversarial encoding strategies. Extensive experiments demonstrate that Dual Defense achieves optimal overall defense success rates and exhibits promising universality in anti-face swapping tasks and dataset generalization ability. It maintains impressive adversariality and traceability in both original and robust settings, surpassing current forgery defense methods that possess only one of these capabilities, including CMUA-Watermark, Anti-Forgery, FakeTagger, or PGD methods.
Abstract:We propose BOSS, an approach that automatically learns to solve new long-horizon, complex, and meaningful tasks by growing a learned skill library with minimal supervision. Prior work in reinforcement learning require expert supervision, in the form of demonstrations or rich reward functions, to learn long-horizon tasks. Instead, our approach BOSS (BOotStrapping your own Skills) learns to accomplish new tasks by performing "skill bootstrapping," where an agent with a set of primitive skills interacts with the environment to practice new skills without receiving reward feedback for tasks outside of the initial skill set. This bootstrapping phase is guided by large language models (LLMs) that inform the agent of meaningful skills to chain together. Through this process, BOSS builds a wide range of complex and useful behaviors from a basic set of primitive skills. We demonstrate through experiments in realistic household environments that agents trained with our LLM-guided bootstrapping procedure outperform those trained with naive bootstrapping as well as prior unsupervised skill acquisition methods on zero-shot execution of unseen, long-horizon tasks in new environments. Website at clvrai.com/boss.