Abstract:Deep hash-based retrieval techniques are widely used in facial retrieval systems to improve the efficiency of facial matching. However, it also brings the risk of privacy leakage. Deep hash models are easily influenced by adversarial examples, which can be leveraged to prevent the malicious retrieval of private images. The existing adversarial example methods against deep hash models focus on universality and transferability, lacking the research on its robustness in online social networks (OSNs), which leads to their failure in anti-retrieval after post-processing. Therefore, we provide the first in-depth discussion on robustness adversarial perturbation in universal transferable anti-facial retrieval and propose Three-in-One Adversarial Perturbation (TOAP). Specifically, we firstly analyze the performance of deep hash models after post-processing and construct a local and global Compression Generator (CG) to simulate complex post-processing scenarios. Then, we explore the variation patterns of the model's objective under image post-processing and propose robust optimization objectives, cluster centers and data space centers, optimizing them using meta-learning. Finally, we iteratively optimize perturbation by alternately generating adversarial examples and fine-tuning the CG, balancing the performance of perturbation while enhancing CG's ability to mitigate them. Numerous experiments demonstrate that, in addition to its advantages in universality and transferability, TOAP significantly outperforms current state-of-the-art methods in multiple robustness metrics. It further improves universality and transferability by 5% to 28%, and achieves up to about 33% significant improvement in several simulated post-processing scenarios as well as mainstream OSNs, demonstrating that TOAP can effectively protect private images from malicious retrieval in real-world scenarios.
Abstract:Arbitrary Style Transfer (AST) achieves the rendering of real natural images into the painting styles of arbitrary art style images, promoting art communication. However, misuse of unauthorized art style images for AST may infringe on artists' copyrights. One countermeasure is robust watermarking, which tracks image propagation by embedding copyright watermarks into carriers. Unfortunately, AST-generated images lose the structural and semantic information of the original style image, hindering end-to-end robust tracking by watermarks. To fill this gap, we propose StyleMark, the first robust watermarking method for black-box AST, which can be seamlessly applied to art style images achieving precise attribution of artistic styles after AST. Specifically, we propose a new style watermark network that adjusts the mean activations of style features through multi-scale watermark embedding, thereby planting watermark traces into the shared style feature space of style images. Furthermore, we design a distribution squeeze loss, which constrain content statistical feature distortion, forcing the reconstruction network to focus on integrating style features with watermarks, thus optimizing the intrinsic watermark distribution. Finally, based on solid end-to-end training, StyleMark mitigates the optimization conflict between robustness and watermark invisibility through decoder fine-tuning under random noise. Experimental results demonstrate that StyleMark exhibits significant robustness against black-box AST and common pixel-level distortions, while also securely defending against malicious adaptive attacks.
Abstract:The security of AI-generated content (AIGC) detection based on GANs and diffusion models is closely related to the credibility of multimedia content. Malicious adversarial attacks can evade these developing AIGC detection. However, most existing adversarial attacks focus only on GAN-generated facial images detection, struggle to be effective on multi-class natural images and diffusion-based detectors, and exhibit poor invisibility. To fill this gap, we first conduct an in-depth analysis of the vulnerability of AIGC detectors and discover the feature that detectors vary in vulnerability to different post-processing. Then, considering the uncertainty of detectors in real-world scenarios, and based on the discovery, we propose a Realistic-like Robust Black-box Adversarial attack (R$^2$BA) with post-processing fusion optimization. Unlike typical perturbations, R$^2$BA uses real-world post-processing, i.e., Gaussian blur, JPEG compression, Gaussian noise and light spot to generate adversarial examples. Specifically, we use a stochastic particle swarm algorithm with inertia decay to optimize post-processing fusion intensity and explore the detector's decision boundary. Guided by the detector's fake probability, R$^2$BA enhances/weakens the detector-vulnerable/detector-robust post-processing intensity to strike a balance between adversariality and invisibility. Extensive experiments on popular/commercial AIGC detectors and datasets demonstrate that R$^2$BA exhibits impressive anti-detection performance, excellent invisibility, and strong robustness in GAN-based and diffusion-based cases. Compared to state-of-the-art white-box and black-box attacks, R$^2$BA shows significant improvements of 15% and 21% in anti-detection performance under the original and robust scenario respectively, offering valuable insights for the security of AIGC detection in real-world applications.
Abstract:Artificial Intelligence Generated Content (AIGC) techniques, represented by text-to-image generation, have led to a malicious use of deep forgeries, raising concerns about the trustworthiness of multimedia content. Adapting traditional forgery detection methods to diffusion models proves challenging. Thus, this paper proposes a forgery detection method explicitly designed for diffusion models called Trinity Detector. Trinity Detector incorporates coarse-grained text features through a CLIP encoder, coherently integrating them with fine-grained artifacts in the pixel domain for comprehensive multimodal detection. To heighten sensitivity to diffusion-generated image features, a Multi-spectral Channel Attention Fusion Unit (MCAF) is designed, extracting spectral inconsistencies through adaptive fusion of diverse frequency bands and further integrating spatial co-occurrence of the two modalities. Extensive experimentation validates that our Trinity Detector method outperforms several state-of-the-art methods, our performance is competitive across all datasets and up to 17.6\% improvement in transferability in the diffusion datasets.
Abstract:The wide deployment of Face Recognition (FR) systems poses risks of privacy leakage. One countermeasure to address this issue is adversarial attacks, which deceive malicious FR searches but simultaneously interfere the normal identity verification of trusted authorizers. In this paper, we propose the first Double Privacy Guard (DPG) scheme based on traceable adversarial watermarking. DPG employs a one-time watermark embedding to deceive unauthorized FR models and allows authorizers to perform identity verification by extracting the watermark. Specifically, we propose an information-guided adversarial attack against FR models. The encoder embeds an identity-specific watermark into the deep feature space of the carrier, guiding recognizable features of the image to deviate from the source identity. We further adopt a collaborative meta-optimization strategy compatible with sub-tasks, which regularizes the joint optimization direction of the encoder and decoder. This strategy enhances the representation of universal carrier features, mitigating multi-objective optimization conflicts in watermarking. Experiments confirm that DPG achieves significant attack success rates and traceability accuracy on state-of-the-art FR models, exhibiting remarkable robustness that outperforms the existing privacy protection methods using adversarial attacks and deep watermarking, or simple combinations of the two. Our work potentially opens up new insights into proactive protection for FR privacy.
Abstract:With the continuous improvements of deepfake methods, forgery messages have transitioned from single-modality to multi-modal fusion, posing new challenges for existing forgery detection algorithms. In this paper, we propose AVT2-DWF, the Audio-Visual dual Transformers grounded in Dynamic Weight Fusion, which aims to amplify both intra- and cross-modal forgery cues, thereby enhancing detection capabilities. AVT2-DWF adopts a dual-stage approach to capture both spatial characteristics and temporal dynamics of facial expressions. This is achieved through a face transformer with an n-frame-wise tokenization strategy encoder and an audio transformer encoder. Subsequently, it uses multi-modal conversion with dynamic weight fusion to address the challenge of heterogeneous information fusion between audio and visual modalities. Experiments on DeepfakeTIMIT, FakeAVCeleb, and DFDC datasets indicate that AVT2-DWF achieves state-of-the-art performance intra- and cross-dataset Deepfake detection. Code is available at https://github.com/raining-dev/AVT2-DWF.
Abstract:The malicious applications of deep forgery, represented by face swapping, have introduced security threats such as misinformation dissemination and identity fraud. While some research has proposed the use of robust watermarking methods to trace the copyright of facial images for post-event traceability, these methods cannot effectively prevent the generation of forgeries at the source and curb their dissemination. To address this problem, we propose a novel comprehensive active defense mechanism that combines traceability and adversariality, called Dual Defense. Dual Defense invisibly embeds a single robust watermark within the target face to actively respond to sudden cases of malicious face swapping. It disrupts the output of the face swapping model while maintaining the integrity of watermark information throughout the entire dissemination process. This allows for watermark extraction at any stage of image tracking for traceability. Specifically, we introduce a watermark embedding network based on original-domain feature impersonation attack. This network learns robust adversarial features of target facial images and embeds watermarks, seeking a well-balanced trade-off between watermark invisibility, adversariality, and traceability through perceptual adversarial encoding strategies. Extensive experiments demonstrate that Dual Defense achieves optimal overall defense success rates and exhibits promising universality in anti-face swapping tasks and dataset generalization ability. It maintains impressive adversariality and traceability in both original and robust settings, surpassing current forgery defense methods that possess only one of these capabilities, including CMUA-Watermark, Anti-Forgery, FakeTagger, or PGD methods.
Abstract:Optical Character Recognition (OCR) enables automatic text extraction from scanned or digitized text images, but it also makes it easy to pirate valuable or sensitive text from these images. Previous methods to prevent OCR piracy by distorting characters in text images are impractical in real-world scenarios, as pirates can capture arbitrary portions of the text images, rendering the defenses ineffective. In this work, we propose a novel and effective defense mechanism termed the Universal Defensive Underpainting Patch (UDUP) that modifies the underpainting of text images instead of the characters. UDUP is created through an iterative optimization process to craft a small, fixed-size defensive patch that can generate non-overlapping underpainting for text images of any size. Experimental results show that UDUP effectively defends against unauthorized OCR under the setting of any screenshot range or complex image background. It is agnostic to the content, size, colors, and languages of characters, and is robust to typical image operations such as scaling and compressing. In addition, the transferability of UDUP is demonstrated by evading several off-the-shelf OCRs. The code is available at https://github.com/QRICKDD/UDUP.
Abstract:Deep neural networks are proven to be vulnerable to backdoor attacks. Detecting the trigger samples during the inference stage, i.e., the test-time trigger sample detection, can prevent the backdoor from being triggered. However, existing detection methods often require the defenders to have high accessibility to victim models, extra clean data, or knowledge about the appearance of backdoor triggers, limiting their practicality. In this paper, we propose the test-time corruption robustness consistency evaluation (TeCo), a novel test-time trigger sample detection method that only needs the hard-label outputs of the victim models without any extra information. Our journey begins with the intriguing observation that the backdoor-infected models have similar performance across different image corruptions for the clean images, but perform discrepantly for the trigger samples. Based on this phenomenon, we design TeCo to evaluate test-time robustness consistency by calculating the deviation of severity that leads to predictions' transition across different corruptions. Extensive experiments demonstrate that compared with state-of-the-art defenses, which even require either certain information about the trigger types or accessibility of clean data, TeCo outperforms them on different backdoor attacks, datasets, and model architectures, enjoying a higher AUROC by 10% and 5 times of stability.
Abstract:Adversarial example is a rising way of protecting facial privacy security from deepfake modification. To prevent massive facial images from being illegally modified by various deepfake models, it is essential to design a universal deepfake disruptor. However, existing works treat deepfake disruption as an End-to-End process, ignoring the functional difference between feature extraction and image reconstruction, which makes it difficult to generate a cross-model universal disruptor. In this work, we propose a novel Feature-Output ensemble UNiversal Disruptor (FOUND) against deepfake networks, which explores a new opinion that considers attacking feature extractors as the more critical and general task in deepfake disruption. We conduct an effective two-stage disruption process. We first disrupt multi-model feature extractors through multi-feature aggregation and individual-feature maintenance, and then develop a gradient-ensemble algorithm to enhance the disruption effect by simplifying the complex optimization problem of disrupting multiple End-to-End models. Extensive experiments demonstrate that FOUND can significantly boost the disruption effect against ensemble deepfake benchmark models. Besides, our method can fast obtain a cross-attribute, cross-image, and cross-model universal deepfake disruptor with only a few training images, surpassing state-of-the-art universal disruptors in both success rate and efficiency.