Abstract:Reinforcement finetuning (RFT) has shown great potential for enhancing the mathematical reasoning capabilities of large language models (LLMs), but it is often sample- and compute-inefficient, requiring extensive training. In this work, we introduce AdaRFT (Adaptive Curriculum Reinforcement Finetuning), a method that significantly improves both the efficiency and final accuracy of RFT through adaptive curriculum learning. AdaRFT dynamically adjusts the difficulty of training problems based on the model's recent reward signals, ensuring that the model consistently trains on tasks that are challenging but solvable. This adaptive sampling strategy accelerates learning by maintaining an optimal difficulty range, avoiding wasted computation on problems that are too easy or too hard. AdaRFT requires only a lightweight extension to standard RFT algorithms like Proximal Policy Optimization (PPO), without modifying the reward function or model architecture. Experiments on competition-level math datasets-including AMC, AIME, and IMO-style problems-demonstrate that AdaRFT significantly improves both training efficiency and reasoning performance. We evaluate AdaRFT across multiple data distributions and model sizes, showing that it reduces the number of training steps by up to 2x and improves accuracy by a considerable margin, offering a more scalable and effective RFT framework.
Abstract:Detecting biases in structured data is a complex and time-consuming task. Existing automated techniques are limited in diversity of data types and heavily reliant on human case-by-case handling, resulting in a lack of generalizability. Currently, large language model (LLM)-based agents have made significant progress in data science, but their ability to detect data biases is still insufficiently explored. To address this gap, we introduce the first end-to-end, multi-agent synergy framework, BIASINSPECTOR, designed for automatic bias detection in structured data based on specific user requirements. It first develops a multi-stage plan to analyze user-specified bias detection tasks and then implements it with a diverse and well-suited set of tools. It delivers detailed results that include explanations and visualizations. To address the lack of a standardized framework for evaluating the capability of LLM agents to detect biases in data, we further propose a comprehensive benchmark that includes multiple evaluation metrics and a large set of test cases. Extensive experiments demonstrate that our framework achieves exceptional overall performance in structured data bias detection, setting a new milestone for fairer data applications.
Abstract:Cultural Intelligence (CQ) refers to the ability to understand unfamiliar cultural contexts-a crucial skill for large language models (LLMs) to effectively engage with globally diverse users. While existing research often focuses on explicitly stated cultural norms, such approaches fail to capture the subtle, implicit values that underlie real-world conversations. To address this gap, we introduce CQ-Bench, a benchmark specifically designed to assess LLMs' capability to infer implicit cultural values from natural conversational contexts. We generate a multi-character conversation-based stories dataset using values from the World Value Survey and GlobalOpinions datasets, with topics including ethical, religious, social, and political. Our dataset construction pipeline includes rigorous validation procedures-incorporation, consistency, and implicitness checks-using GPT-4o, with 98.2% human-model agreement in the final validation. Our benchmark consists of three tasks of increasing complexity: attitude detection, value selection, and value extraction. We find that while o1 and Deepseek-R1 models reach human-level performance in value selection (0.809 and 0.814), they still fall short in nuanced attitude detection, with F1 scores of 0.622 and 0.635, respectively. In the value extraction task, GPT-4o-mini and o3-mini score 0.602 and 0.598, highlighting the difficulty of open-ended cultural reasoning. Notably, fine-tuning smaller models (e.g., LLaMA-3.2-3B) on only 500 culturally rich examples improves performance by over 10%, even outperforming stronger baselines (o3-mini) in some cases. Using CQ-Bench, we provide insights into the current challenges in LLMs' CQ research and suggest practical pathways for enhancing LLMs' cross-cultural reasoning abilities.
Abstract:Large language models (LLMs) possess impressive linguistic capabilities but often fail to faithfully retain factual knowledge, leading to hallucinations and unreliable outputs. Understanding LLMs' knowledge deficiencies by exhaustively evaluating against full-scale knowledge bases is computationally prohibitive, especially for closed-weight models. We propose stochastic error ascent (SEA), a scalable and efficient framework for discovering knowledge deficiencies (errors) in closed-weight LLMs under a strict query budget. Rather than naively probing all knowledge candidates, SEA formulates error discovery as a stochastic optimization process: it iteratively retrieves new high-error candidates by leveraging the semantic similarity to previously observed failures. To further enhance search efficiency and coverage, SEA employs hierarchical retrieval across document and paragraph levels, and constructs a relation directed acyclic graph to model error propagation and identify systematic failure modes. Empirically, SEA uncovers 40.7x more knowledge errors than Automated Capability Discovery and 26.7% more than AutoBencher, while reducing the cost-per-error by 599x and 9x, respectively. Human evaluation confirms the high quality of generated questions, while ablation and convergence analyses validate the contribution of each component in SEA. Further analysis on the discovered errors reveals correlated failure patterns across LLM families and recurring deficits, highlighting the need for better data coverage and targeted fine-tuning in future LLM development.
Abstract:This research investigates both explicit and implicit social biases exhibited by Vision-Language Models (VLMs). The key distinction between these bias types lies in the level of awareness: explicit bias refers to conscious, intentional biases, while implicit bias operates subconsciously. To analyze explicit bias, we directly pose questions to VLMs related to gender and racial differences: (1) Multiple-choice questions based on a given image (e.g., "What is the education level of the person in the image?") (2) Yes-No comparisons using two images (e.g., "Is the person in the first image more educated than the person in the second image?") For implicit bias, we design tasks where VLMs assist users but reveal biases through their responses: (1) Image description tasks: Models are asked to describe individuals in images, and we analyze disparities in textual cues across demographic groups. (2) Form completion tasks: Models draft a personal information collection form with 20 attributes, and we examine correlations among selected attributes for potential biases. We evaluate Gemini-1.5, GPT-4V, GPT-4o, LLaMA-3.2-Vision and LLaVA-v1.6. Our code and data are publicly available at https://github.com/uscnlp-lime/VisBias.
Abstract:Large language models (LLMs) are vulnerable to unsafe training data that even small amounts of unsafe data can lead to harmful model behaviors. Detecting and filtering such unsafe training data is essential for trustworthy model development. Current state-of-the-art (SOTA) approaches typically rely on training moderation classifiers which requires significant computational overhead and are limited to predefined taxonomies, making them less adaptable to evolving safety concerns. Moreover, these classifiers lack insight into the training process, limiting their effectiveness in filtering unsafe data. To address these limitations, we propose DABUF, leveraging data attribution to detect and filter unsafe training data by attributing harmful model outputs to influential training data points. DABUF enables flexible identification of various unsafe data types without predefined taxonomies. However, in practice, model outputs can be complex with combined safe linguistic features and unsafe content, leading to reduced attribution accuracy. In such cases, DABUF will integrate moderation classifiers to identify a minimal subset of unsafe training data for targeted attribution (such as jailbreak). When model outputs are relatively straightforward, DABUF uses model outputs directly as the attribution targets. We evaluate the performance on two different tasks: in filtering jailbreaking training data and in identifying and mitigating gender bias. DABUF outperforms SOTA approaches by up to 7.5\% in detection AUPRC in jailbreaking scenarios, and 44.1\% in detecting gender bias. Moreover, retraining on DABUF-filtered data leads to higher model safety across experiments, underscoring its versatility in addressing a broad spectrum of unsafe data issues.
Abstract:Large language models (LLMs) have demonstrated significant capability in code generation, drawing increasing attention to the evaluation of the quality and safety of their outputs. However, research on bias in code generation remains limited. Existing studies typically assess bias by applying malicious prompts or reapply tasks and dataset for discriminative models. Given that LLMs are often aligned with human values and that prior datasets are not fully optimized for code-related tasks, there is a pressing need for benchmarks specifically designed for evaluating code models. In this study, we introduce FairCode, a novel benchmark for evaluating bias in code generation. FairCode comprises two tasks: function implementation and test case generation, each evaluating social bias through diverse scenarios. Additionally, we propose a new metric, FairScore, to assess model performance on this benchmark. We conduct experiments on widely used LLMs and provide a comprehensive analysis of the results. The findings reveal that all tested LLMs exhibit bias. The code is available at https://github.com/YongkDu/FairCode.
Abstract:In recent years, large language models (LLMs) have been widely adopted in political science tasks such as election prediction, sentiment analysis, policy impact assessment, and misinformation detection. Meanwhile, the need to systematically understand how LLMs can further revolutionize the field also becomes urgent. In this work, we--a multidisciplinary team of researchers spanning computer science and political science--present the first principled framework termed Political-LLM to advance the comprehensive understanding of integrating LLMs into computational political science. Specifically, we first introduce a fundamental taxonomy classifying the existing explorations into two perspectives: political science and computational methodologies. In particular, from the political science perspective, we highlight the role of LLMs in automating predictive and generative tasks, simulating behavior dynamics, and improving causal inference through tools like counterfactual generation; from a computational perspective, we introduce advancements in data preparation, fine-tuning, and evaluation methods for LLMs that are tailored to political contexts. We identify key challenges and future directions, emphasizing the development of domain-specific datasets, addressing issues of bias and fairness, incorporating human expertise, and redefining evaluation criteria to align with the unique requirements of computational political science. Political-LLM seeks to serve as a guidebook for researchers to foster an informed, ethical, and impactful use of Artificial Intelligence in political science. Our online resource is available at: http://political-llm.org/.
Abstract:Recent advancements in Large Language Models (LLMs) have opened new avenues for accelerating drug discovery processes. Despite their potential, several critical challenges remain unsolved, particularly in translating theoretical ideas into practical applications within the highly specialized field of pharmaceutical research, limiting practitioners from leveraging the latest AI development in drug discovery. To this end, we introduce DrugAgent, a multi-agent framework aimed at automating machine learning (ML) programming in drug discovery. DrugAgent incorporates domain expertise by identifying specific requirements and building domain-specific tools, while systematically exploring different ideas to find effective solutions. A preliminary case study demonstrates DrugAgent's potential to overcome key limitations LLMs face in drug discovery, moving toward AI-driven innovation. For example, DrugAgent is able to complete the ML programming pipeline end-to-end, from data acquisition to performance evaluation for the ADMET prediction task, and finally select the best model, where the random forest model achieves an F1 score of 0.92 when predicting absorption using the PAMPA dataset.
Abstract:Differential privacy (DP) is applied when fine-tuning pre-trained large language models (LLMs) to limit leakage of training examples. While most DP research has focused on improving a model's privacy-utility tradeoff, some find that DP can be unfair to or biased against underrepresented groups. In this work, we show the impact of DP on bias in LLMs through empirical analysis. Differentially private training can increase the model bias against protected groups w.r.t AUC-based bias metrics. DP makes it more difficult for the model to differentiate between the positive and negative examples from the protected groups and other groups in the rest of the population. Our results also show that the impact of DP on bias is not only affected by the privacy protection level but also the underlying distribution of the dataset.