Abstract:Time series forecasting (TSF) has long been a crucial task in both industry and daily life. Most classical statistical models may have certain limitations when applied to practical scenarios in fields such as energy, healthcare, traffic, meteorology, and economics, especially when high accuracy is required. With the continuous development of deep learning, numerous new models have emerged in the field of time series forecasting in recent years. However, existing surveys have not provided a unified summary of the wide range of model architectures in this field, nor have they given detailed summaries of works in feature extraction and datasets. To address this gap, in this review, we comprehensively study the previous works and summarize the general paradigms of Deep Time Series Forecasting (DTSF) in terms of model architectures. Besides, we take an innovative approach by focusing on the composition of time series and systematically explain important feature extraction methods. Additionally, we provide an overall compilation of datasets from various domains in existing works. Finally, we systematically emphasize the significant challenges faced and future research directions in this field.
Abstract:Online Knowledge Distillation (OKD) methods streamline the distillation training process into a single stage, eliminating the need for knowledge transfer from a pretrained teacher network to a more compact student network. This paper presents an innovative approach to leverage intermediate spatial representations. Our analysis of the intermediate features from both teacher and student models reveals two pivotal insights: (1) the similar features between students and teachers are predominantly focused on foreground objects. (2) teacher models emphasize foreground objects more than students. Building on these findings, we propose Asymmetric Decision-Making (ADM) to enhance feature consensus learning for student models while continuously promoting feature diversity in teacher models. Specifically, Consensus Learning for student models prioritizes spatial features with high consensus relative to teacher models. Conversely, Divergence Learning for teacher models highlights spatial features with lower similarity compared to student models, indicating superior performance by teacher models in these regions. Consequently, ADM facilitates the student models to catch up with the feature learning process of the teacher models. Extensive experiments demonstrate that ADM consistently surpasses existing OKD methods across various online knowledge distillation settings and also achieves superior results when applied to offline knowledge distillation, semantic segmentation and diffusion distillation tasks.
Abstract:Diffusion transformers(DiTs) struggle to generate images at resolutions higher than their training resolutions. The primary obstacle is that the explicit positional encodings(PE), such as RoPE, need extrapolation which degrades performance when the inference resolution differs from training. In this paper, we propose a Length-Extrapolatable Diffusion Transformer(LEDiT), a simple yet powerful architecture to overcome this limitation. LEDiT needs no explicit PEs, thereby avoiding extrapolation. The key innovations of LEDiT are introducing causal attention to implicitly impart global positional information to tokens, while enhancing locality to precisely distinguish adjacent tokens. Experiments on 256x256 and 512x512 ImageNet show that LEDiT can scale the inference resolution to 512x512 and 1024x1024, respectively, while achieving better image quality compared to current state-of-the-art length extrapolation methods(NTK-aware, YaRN). Moreover, LEDiT achieves strong extrapolation performance with just 100K steps of fine-tuning on a pretrained DiT, demonstrating its potential for integration into existing text-to-image DiTs. Project page: https://shenzhang2145.github.io/ledit/
Abstract:Bin picking is a challenging robotic task due to occlusions and physical constraints that limit visual information for object recognition and grasping. Existing approaches often rely on known CAD models or prior object geometries, restricting generalization to novel or unknown objects. Other methods directly regress grasp poses from RGB-D data without object priors, but the inherent noise in depth sensing and the lack of object understanding make grasp synthesis and evaluation more difficult. Superquadrics (SQ) offer a compact, interpretable shape representation that captures the physical and graspability understanding of objects. However, recovering them from limited viewpoints is challenging, as existing methods rely on multiple perspectives for near-complete point cloud reconstruction, limiting their effectiveness in bin-picking. To address these challenges, we propose \textbf{RGBSQGrasp}, a grasping framework that leverages superquadric shape primitives and foundation metric depth estimation models to infer grasp poses from a monocular RGB camera -- eliminating the need for depth sensors. Our framework integrates a universal, cross-platform dataset generation pipeline, a foundation model-based object point cloud estimation module, a global-local superquadric fitting network, and an SQ-guided grasp pose sampling module. By integrating these components, RGBSQGrasp reliably infers grasp poses through geometric reasoning, enhancing grasp stability and adaptability to unseen objects. Real-world robotic experiments demonstrate a 92\% grasp success rate, highlighting the effectiveness of RGBSQGrasp in packed bin-picking environments.
Abstract:Traditional wireless image transmission methods struggle to balance rate efficiency and reconstruction quality under varying channel conditions. To address these challenges, we propose a novel semantic communication (SemCom) system that integrates entropy-aware and channel-adaptive mechanisms for wireless image transmission over multi-user multiple-input multiple-output (MU-MIMO) fading channels. Unlike existing approaches, our system dynamically adjusts transmission rates based on the entropy of feature maps, channel state information (CSI), and signal-to-noise ratio (SNR), ensuring optimal resource utilization and robust performance. The system employs feature map pruning, channel attention, spatial attention, and multihead self-attention (MHSA) mechanisms to prioritize critical semantic features and effectively reconstruct images. Experimental results demonstrate that the proposed system outperforms state-of-the-art benchmarks, including BPG+LDPC+4QAM and Deep JSCC, in terms of rate-distortion performance, flexibility, and robustness, particularly under challenging conditions such as low SNR, imperfect CSI, and inter-user interference. This work establishes a strong foundation for adaptive-rate SemCom systems and highlights their potential for real-time, bandwidthintensive applications.
Abstract:In the real world, objects reveal internal textures when sliced or cut, yet this behavior is not well-studied in 3D generation tasks today. For example, slicing a virtual 3D watermelon should reveal flesh and seeds. Given that no available dataset captures an object's full internal structure and collecting data from all slices is impractical, generative methods become the obvious approach. However, current 3D generation and inpainting methods often focus on visible appearance and overlook internal textures. To bridge this gap, we introduce FruitNinja, the first method to generate internal textures for 3D objects undergoing geometric and topological changes. Our approach produces objects via 3D Gaussian Splatting (3DGS) with both surface and interior textures synthesized, enabling real-time slicing and rendering without additional optimization. FruitNinja leverages a pre-trained diffusion model to progressively inpaint cross-sectional views and applies voxel-grid-based smoothing to achieve cohesive textures throughout the object. Our OpaqueAtom GS strategy overcomes 3DGS limitations by employing densely distributed opaque Gaussians, avoiding biases toward larger particles that destabilize training and sharp color transitions for fine-grained textures. Experimental results show that FruitNinja substantially outperforms existing approaches, showcasing unmatched visual quality in real-time rendered internal views across arbitrary geometry manipulations.
Abstract:Recent advances in image generation have made diffusion models powerful tools for creating high-quality images. However, their iterative denoising process makes understanding and interpreting their semantic latent spaces more challenging than other generative models, such as GANs. Recent methods have attempted to address this issue by identifying semantically meaningful directions within the latent space. However, they often need manual interpretation or are limited in the number of vectors that can be trained, restricting their scope and utility. This paper proposes a novel framework for unsupervised exploration of diffusion latent spaces. We directly leverage natural language prompts and image captions to map latent directions. This method allows for the automatic understanding of hidden features and supports a broader range of analysis without the need to train specific vectors. Our method provides a more scalable and interpretable understanding of the semantic knowledge encoded within diffusion models, facilitating comprehensive analysis of latent biases and the nuanced representations these models learn. Experimental results show that our framework can uncover hidden patterns and associations in various domains, offering new insights into the interpretability of diffusion model latent spaces.
Abstract:Image-based Pose-Agnostic 3D Anomaly Detection is an important task that has emerged in industrial quality control. This task seeks to find anomalies from query images of a tested object given a set of reference images of an anomaly-free object. The challenge is that the query views (a.k.a poses) are unknown and can be different from the reference views. Currently, new methods such as OmniposeAD and SplatPose have emerged to bridge the gap by synthesizing pseudo reference images at the query views for pixel-to-pixel comparison. However, none of these methods can infer in real-time, which is critical in industrial quality control for massive production. For this reason, we propose SplatPose+, which employs a hybrid representation consisting of a Structure from Motion (SfM) model for localization and a 3D Gaussian Splatting (3DGS) model for Novel View Synthesis. Although our proposed pipeline requires the computation of an additional SfM model, it offers real-time inference speeds and faster training compared to SplatPose. Quality-wise, we achieved a new SOTA on the Pose-agnostic Anomaly Detection benchmark with the Multi-Pose Anomaly Detection (MAD-SIM) dataset.
Abstract:Food computing is both important and challenging in computer vision (CV). It significantly contributes to the development of CV algorithms due to its frequent presence in datasets across various applications, ranging from classification and instance segmentation to 3D reconstruction. The polymorphic shapes and textures of food, coupled with high variation in forms and vast multimodal information, including language descriptions and nutritional data, make food computing a complex and demanding task for modern CV algorithms. 3D food modeling is a new frontier for addressing food-related problems, due to its inherent capability to deal with random camera views and its straightforward representation for calculating food portion size. However, the primary hurdle in the development of algorithms for food object analysis is the lack of nutrition values in existing 3D datasets. Moreover, in the broader field of 3D research, there is a critical need for domain-specific test datasets. To bridge the gap between general 3D vision and food computing research, we propose MetaFood3D. This dataset consists of 637 meticulously labeled 3D food objects across 108 categories, featuring detailed nutrition information, weight, and food codes linked to a comprehensive nutrition database. The dataset emphasizes intra-class diversity and includes rich modalities such as textured mesh files, RGB-D videos, and segmentation masks. Experimental results demonstrate our dataset's significant potential for improving algorithm performance, highlight the challenging gap between video captures and 3D scanned data, and show the strength of the MetaFood3D dataset in high-quality data generation, simulation, and augmentation.
Abstract:Initial applications of 3D Gaussian Splatting (3DGS) in Visual Simultaneous Localization and Mapping (VSLAM) demonstrate the generation of high-quality volumetric reconstructions from monocular video streams. However, despite these promising advancements, current 3DGS integrations have reduced tracking performance and lower operating speeds compared to traditional VSLAM. To address these issues, we propose integrating 3DGS with Direct Sparse Odometry, a monocular photometric SLAM system. We have done preliminary experiments showing that using Direct Sparse Odometry point cloud outputs, as opposed to standard structure-from-motion methods, significantly shortens the training time needed to achieve high-quality renders. Reducing 3DGS training time enables the development of 3DGS-integrated SLAM systems that operate in real-time on mobile hardware. These promising initial findings suggest further exploration is warranted in combining traditional VSLAM systems with 3DGS.