Abstract:Semantic communication (SemCom) enhances transmission efficiency by sending only task-relevant information compared to traditional methods. However, transmitting semantic-rich data over insecure or public channels poses security and privacy risks. This paper addresses the privacy problem of transmitting images over wiretap channels and proposes a novel SemCom approach ensuring privacy through a differential privacy (DP)-based image protection and deprotection mechanism. The method utilizes the GAN inversion technique to extract disentangled semantic features and applies a DP mechanism to protect sensitive features within the extracted semantic information. To address the non-invertibility of DP, we introduce two neural networks to approximate the DP application and removal processes, offering a privacy protection level close to that by the original DP process. Simulation results validate the effectiveness of our method in preventing eavesdroppers from obtaining sensitive information while maintaining high-fidelity image reconstruction at the legitimate receiver.
Abstract:Pre-trained Language Models (PLMs) have shown excellent performance on various downstream tasks after fine-tuning. Nevertheless, the escalating concerns surrounding user privacy have posed significant challenges to centralized training reliant on extensive data collection. Federated learning, which only requires training on the clients and aggregates weights on the server without sharing data, has emerged as a solution. However, the substantial parameter size of PLMs places a significant burden on the computational resources of client devices, while also leading to costly communication expenses. Introducing Parameter-Efficient Fine-Tuning(PEFT) into federated learning can effectively address this problem. However, we observe that the non-IID data in federated learning leads to a gap in performance between the PEFT method and full parameter fine-tuning(FFT). To overcome this, we propose FeDeRA, an improvement over the Low-Rank Adaption(LoRA) method in federated learning. FeDeRA uses the same adapter module as LoRA. However, the difference lies in FeDeRA's initialization of the adapter module by performing Singular Value Decomposition (SVD) on the pre-trained matrix and selecting its principal components. We conducted extensive experiments, using RoBERTa and DeBERTaV3, on six datasets, comparing the methods including FFT and the other three different PEFT methods. FeDeRA outperforms all other PEFT methods and is comparable to or even surpasses the performance of FFT method. We also deployed federated learning on Jetson AGX Orin and compared the time required by different methods to achieve the target accuracy on specific tasks. Compared to FFT, FeDeRA reduces the training time by 95.9\%, 97.9\%, 96.9\% and 97.3\%, 96.5\%, 96.5\% respectively on three tasks using RoBERTa and DeBERTaV3. The overall experiments indicate that FeDeRA achieves good performance while also maintaining efficiency.
Abstract:Semantic communication (SemCom) has emerged as a key technology for the forthcoming sixth-generation (6G) network, attributed to its enhanced communication efficiency and robustness against channel noise. However, the open nature of wireless channels renders them vulnerable to eavesdropping, posing a serious threat to privacy. To address this issue, we propose a novel secure semantic communication (SemCom) approach for image transmission, which integrates steganography technology to conceal private information within non-private images (host images). Specifically, we propose an invertible neural network (INN)-based signal steganography approach, which embeds channel input signals of a private image into those of a host image before transmission. This ensures that the original private image can be reconstructed from the received signals at the legitimate receiver, while the eavesdropper can only decode the information of the host image. Simulation results demonstrate that the proposed approach maintains comparable reconstruction quality of both host and private images at the legitimate receiver, compared to scenarios without any secure mechanisms. Experiments also show that the eavesdropper is only able to reconstruct host images, showcasing the enhanced security provided by our approach.
Abstract:Recently, learning-based semantic communication (SemCom) has emerged as a promising approach in the upcoming 6G network and researchers have made remarkable efforts in this field. However, existing works have yet to fully explore the advantages of the evolving nature of learning-based systems, where knowledge accumulates during transmission have the potential to enhance system performance. In this paper, we explore an evolving semantic communication system for image transmission, referred to as ESemCom, with the capability to continuously enhance transmission efficiency. The system features a novel channel-aware semantic encoder that utilizes a pre-trained Semantic StyleGAN to extract the channel-correlated latent variables consisting of serval semantic vectors from the input images, which can be directly transmitted over a noisy channel without further channel coding. Moreover, we introduce a semantic caching mechanism that dynamically stores the transmitted semantic vectors in the local caching memory of both the transmitter and receiver. The cached semantic vectors are then exploited to eliminate the need to transmit similar codes in subsequent transmission, thus further reducing communication overhead. Simulation results highlight the evolving performance of the proposed system in terms of transmission efficiency, achieving superior perceptual quality with an average bandwidth compression ratio (BCR) of 1/192 for a sequence of 100 testing images compared to DeepJSCC and Inverse JSCC with the same BCR. Code of this paper is available at \url{https://github.com/recusant7/GAN_SeCom}.
Abstract:In this paper, we investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks. In this system, the IoT devices can collaboratively train a shared model without compromising data privacy. However, due to limited resources in the industrial IoT networks, including computational power, bandwidth, and channel state, it is challenging for many devices to accomplish local training and upload weights to the edge server in time. To address this issue, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework, where the deep model can be divided into several sub-models with different depths and output prediction from the exit in the corresponding sub-model. In this way, the devices with insufficient computational power can choose the earlier exits and avoid training the complete model, which can help reduce computational latency and enable devices to participate into aggregation as much as possible within a latency threshold. Moreover, we propose a greedy approach-based exit selection and bandwidth allocation algorithm to maximize the total number of exits in each communication round. Simulation experiments are conducted on the classical Fashion-MNIST dataset under a non-independent and identically distributed (non-IID) setting, and it shows that the proposed strategy outperforms the conventional FL. In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
Abstract:Although the frequency-division duplex (FDD) massive multiple-input multiple-output (MIMO) system can offer high spectral and energy efficiency, it requires to feedback the downlink channel state information (CSI) from users to the base station (BS), in order to fulfill the precoding design at the BS. However, the large dimension of CSI matrices in the massive MIMO system makes the CSI feedback very challenging, and it is urgent to compress the feedback CSI. To this end, this paper proposes a novel dilated convolution based CSI feedback network, namely DCRNet. Specifically, the dilated convolutions are used to enhance the receptive field (RF) of the proposed DCRNet without increasing the convolution size. Moreover, advanced encoder and decoder blocks are designed to improve the reconstruction performance and reduce computational complexity as well. Numerical results are presented to show the superiority of the proposed DCRNet over the conventional networks. In particular, the proposed DCRNet can achieve almost the state-of-the-arts (SOTA) performance with much lower floating point operations (FLOPs). The open source code and checkpoint of this work are available at https://github.com/recusant7/DCRNet.