Sherman
Abstract:Integrated sensing and communication (ISAC) uses the same software and hardware resources to achieve both communication and sensing functionalities. Thus, it stands as one of the core technologies of 6G and has garnered significant attention in recent years. In ISAC systems, a variety of machine learning models are trained to analyze and identify signal patterns, thereby ensuring reliable sensing and communications. However, considering factors such as communication rates, costs, and privacy, collecting sufficient training data from various ISAC scenarios for these models is impractical. Hence, this paper introduces a generative AI (GenAI) enabled robust data augmentation scheme. The scheme first employs a conditioned diffusion model trained on a limited amount of collected CSI data to generate new samples, thereby expanding the sample quantity. Building on this, the scheme further utilizes another diffusion model to enhance the sample quality, thereby facilitating the data augmentation in scenarios where the original sensing data is insufficient and unevenly distributed. Moreover, we propose a novel algorithm to estimate the acceleration and jerk of signal propagation path length changes from CSI. We then use the proposed scheme to enhance the estimated parameters and detect the number of targets based on the enhanced data. The evaluation reveals that our scheme improves the detection performance by up to 70%, demonstrating reliability and robustness, which supports the deployment and practical use of the ISAC network.
Abstract:Unmanned aerial vehicles (UAVs) have emerged as the potential aerial base stations (BSs) to improve terrestrial communications. However, the limited onboard energy and antenna power of a UAV restrict its communication range and transmission capability. To address these limitations, this work employs collaborative beamforming through a UAV-enabled virtual antenna array to improve transmission performance from the UAV to terrestrial mobile users, under interference from non-associated BSs and dynamic channel conditions. Specifically, we introduce a memory-based random walk model to more accurately depict the mobility patterns of terrestrial mobile users. Following this, we formulate a multi-objective optimization problem (MOP) focused on maximizing the transmission rate while minimizing the flight energy consumption of the UAV swarm. Given the NP-hard nature of the formulated MOP and the highly dynamic environment, we transform this problem into a multi-objective Markov decision process and propose an improved evolutionary multi-objective reinforcement learning algorithm. Specifically, this algorithm introduces an evolutionary learning approach to obtain the approximate Pareto set for the formulated MOP. Moreover, the algorithm incorporates a long short-term memory network and hyper-sphere-based task selection method to discern the movement patterns of terrestrial mobile users and improve the diversity of the obtained Pareto set. Simulation results demonstrate that the proposed method effectively generates a diverse range of non-dominated policies and outperforms existing methods. Additional simulations demonstrate the scalability and robustness of the proposed CB-based method under different system parameters and various unexpected circumstances.
Abstract:The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring. In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas. The computation task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV. In this paper, we consider a UAV-assisted MEC system where the UAV carries the edge servers to facilitate task offloading for ground devices (GDs), and formulate a calculation delay and energy consumption multi-objective optimization problem (CDECMOP) to simultaneously improve the performance and reduce the cost of the system. Then, by modeling the formulated problem as a multi-objective Markov decision process (MOMDP), we propose a multi-objective deep reinforcement learning (DRL) algorithm within an evolutionary framework to dynamically adjust the weights and obtain non-dominated policies. Moreover, to ensure stable convergence and improve performance, we incorporate a target distribution learning (TDL) algorithm. Simulation results demonstrate that the proposed algorithm can better balance multiple optimization objectives and obtain superior non-dominated solutions compared to other methods.
Abstract:Semantic communication (SemCom) is an emerging paradigm aiming at transmitting only task-relevant semantic information to the receiver, which can significantly improve communication efficiency. Recent advancements in generative artificial intelligence (GenAI) have empowered GenAI-enabled SemCom (GenSemCom) to further expand its potential in various applications. However, current GenSemCom systems still face challenges such as semantic inconsistency, limited adaptability to diverse tasks and dynamic environments, and the inability to leverage insights from past transmission. Motivated by the success of retrieval-augmented generation (RAG) in the domain of GenAI, this paper explores the integration of RAG in GenSemCom systems. Specifically, we first provide a comprehensive review of existing GenSemCom systems and the fundamentals of RAG techniques. We then discuss how RAG can be integrated into GenSemCom. Following this, we conduct a case study on semantic image transmission using an RAG-enabled diffusion-based SemCom system, demonstrating the effectiveness of the proposed integration. Finally, we outline future directions for advancing RAG-enabled GenSemCom systems.
Abstract:In the era of the sixth generation (6G) and industrial Internet of Things (IIoT), an industrial cyber-physical system (ICPS) drives the proliferation of sensor devices and computing-intensive tasks. To address the limited resources of IIoT sensor devices, unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) has emerged as a promising solution, providing flexible and cost-effective services in close proximity of IIoT sensor devices (ISDs). However, leveraging aerial MEC to meet the delay-sensitive and computation-intensive requirements of the ISDs could face several challenges, including the limited communication, computation and caching (3C) resources, stringent offloading requirements for 3C services, and constrained on-board energy of UAVs. To address these issues, we first present a collaborative aerial MEC-assisted ICPS architecture by incorporating the computing capabilities of the macro base station (MBS) and UAVs. We then formulate a service delay minimization optimization problem (SDMOP). Since the SDMOP is proved to be an NP-hard problem, we propose a joint computation offloading, caching, communication resource allocation, computation resource allocation, and UAV trajectory control approach (JC5A). Specifically, JC5A consists of a block successive upper bound minimization method of multipliers (BSUMM) for computation offloading and service caching, a convex optimization-based method for communication and computation resource allocation, and a successive convex approximation (SCA)-based method for UAV trajectory control. Moreover, we theoretically prove the convergence and polynomial complexity of JC5A. Simulation results demonstrate that the proposed approach can achieve superior system performance compared to the benchmark approaches and algorithms.
Abstract:The rise of 6G-enable Vehicular Metaverses is transforming the automotive industry by integrating immersive, real-time vehicular services through ultra-low latency and high bandwidth connectivity. In 6G-enable Vehicular Metaverses, vehicles are represented by Vehicle Twins (VTs), which serve as digital replicas of physical vehicles to support real-time vehicular applications such as large Artificial Intelligence (AI) model-based Augmented Reality (AR) navigation, called VT tasks. VT tasks are resource-intensive and need to be offloaded to ground Base Stations (BSs) for fast processing. However, high demand for VT tasks and limited resources of ground BSs, pose significant resource allocation challenges, particularly in densely populated urban areas like intersections. As a promising solution, Unmanned Aerial Vehicles (UAVs) act as aerial edge servers to dynamically assist ground BSs in handling VT tasks, relieving resource pressure on ground BSs. However, due to high mobility of UAVs, there exists information asymmetry regarding VT task demands between UAVs and ground BSs, resulting in inefficient resource allocation of UAVs. To address these challenges, we propose a learning-based Modified Second-Bid (MSB) auction mechanism to optimize resource allocation between ground BSs and UAVs by accounting for VT task latency and accuracy. Moreover, we design a diffusion-based reinforcement learning algorithm to optimize the price scaling factor, maximizing the total surplus of resource providers and minimizing VT task latency. Finally, simulation results demonstrate that the proposed diffusion-based MSB auction outperforms traditional baselines, providing better resource distribution and enhanced service quality for vehicular users.
Abstract:Since hybrid beamforming (HBF) can approach the performance of fully-digital beamforming (FDBF) with much lower hardware complexity, we investigate the HBF design for beam-hopping (BH) low earth orbit (LEO) satellite communications (SatComs). Aiming at maximizing the sum-rate of totally illuminated beam positions during the whole BH period, we consider joint beamforming and illumination pattern design subject to the HBF constraints and sum-rate requirements. To address the non-convexity of the HBF constraints, we temporarily replace the HBF constraints with the FDBF constraints. Then we propose an FDBF and illumination pattern random search (FDBF-IPRS) scheme to optimize illumination patterns and fully-digital beamformers using constrained random search and fractional programming methods. To further reduce the computational complexity, we propose an FDBF and illumination pattern alternating optimization (FDBF-IPAO) scheme, where we relax the integer illumination pattern to continuous variables and after finishing all the iterations we quantize the continuous variables into integer ones. Based on the fully-digital beamformers designed by the FDBF-IPRS or FDBF-IPAO scheme, we propose an HBF alternating minimization algorithm to design the hybrid beamformers. Simulation results show that the proposed schemes can achieve satisfactory sum-rate performance for BH LEO SatComs.
Abstract:High-speed train (HST) has garnered significant attention from both academia and industry due to the rapid development of railways worldwide. Millimeter wave (mmWave) communication, known for its large bandwidth is an effective way to address performance bottlenecks in cellular network based HST wireless communication systems. However, mmWave signals suffer from significant path loss when traversing carriage, posing substantial challenges to cellular networks. To address this issue, reconfigurable intelligent surfaces (RIS) have gained considerable interest for its ability to enhance cell coverage by reflecting signals toward receiver. Ensuring communication reliability, a core performance indicators of ultra-reliable and low-latency communications (URLLC) in fifth-generation systems, is crucial for providing steady and reliable data transmissions along railways, particularly for delivering safety and control messages and monitoring HST signaling information. In this paper, we investigate a refracting RIS-assisted multi-user multiple-input single-output URLLC system in mmWave HST communications. We propose a sum rate maximization problem, subject to base station beamforming constraint, as well as refracting RIS discrete phase shifts and reliability constraints. To solve this optimization problem, we design a joint optimization algorithm based on alternating optimization method. This involves decoupling the original optimization problem into active beamforming design and packet error probability optimization subproblem, and discrete phase shift design subproblems. These subproblems are addressed exploiting Lagrangian dual method and the local search method, respectively. Simulation results demonstrate the fast convergence of the proposed algorithm and highlight the benefits of refracting RIS adoption for sum rate improvement in mmWave HST networks.
Abstract:Integrated sensing and communications (ISAC) is expected to be a key technology for 6G, and channel state information (CSI) based sensing is a key component of ISAC. However, current research on ISAC focuses mainly on improving sensing performance, overlooking security issues, particularly the unauthorized sensing of users. In this paper, we propose a secure sensing system (DFSS) based on two distinct diffusion models. Specifically, we first propose a discrete conditional diffusion model to generate graphs with nodes and edges, guiding the ISAC system to appropriately activate wireless links and nodes, which ensures the sensing performance while minimizing the operation cost. Using the activated links and nodes, DFSS then employs the continuous conditional diffusion model to generate safeguarding signals, which are next modulated onto the pilot at the transmitter to mask fluctuations caused by user activities. As such, only ISAC devices authorized with the safeguarding signals can extract the true CSI for sensing, while unauthorized devices are unable to achieve the same sensing. Experiment results demonstrate that DFSS can reduce the activity recognition accuracy of the unauthorized devices by approximately 70%, effectively shield the user from the unauthorized surveillance.
Abstract:Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries. By digitizing data throughout the product life cycle, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures. Thanks to data process capability, Generative Artificial Intelligence (GAI) can drive the construction and update of DTs to improve predictive accuracy and prepare for diverse smart manufacturing. However, mechanisms that leverage sensing Industrial Internet of Things (IIoT) devices to share data for the construction of DTs are susceptible to adverse selection problems. In this paper, we first develop a GAI-driven DT architecture for ICPSs. To address the adverse selection problem caused by information asymmetry, we propose a contract theory model and develop the sustainable diffusion-based soft actor-critic algorithm to identify the optimal feasible contract. Specifically, we leverage the dynamic structured pruning technique to reduce parameter numbers of actor networks, allowing sustainability and efficient implementation of the proposed algorithm. Finally, numerical results demonstrate the effectiveness of the proposed scheme.