Sherman
Abstract:Traffic flow estimation (TFE) is crucial for urban intelligent traffic systems. While traditional on-road detectors are hindered by limited coverage and high costs, cloud computing and data mining of vehicular network data, such as driving speeds and GPS coordinates, present a promising and cost-effective alternative. Furthermore, minimizing data collection can significantly reduce overhead. However, limited data can lead to inaccuracies and instability in TFE. To address this, we introduce the spatial-temporal Mamba (ST-Mamba), a deep learning model combining a convolutional neural network (CNN) with a Mamba framework. ST-Mamba is designed to enhance TFE accuracy and stability by effectively capturing the spatial-temporal patterns within traffic flow. Our model aims to achieve results comparable to those from extensive data sets while only utilizing minimal data. Simulations using real-world datasets have validated our model's ability to deliver precise and stable TFE across an urban landscape based on limited data, establishing a cost-efficient solution for TFE.
Abstract:Traffic flow estimation (TFE) is crucial for intelligent transportation systems. Traditional TFE methods rely on extensive road sensor networks and typically incur significant costs. Sparse mobile crowdsensing enables a cost-effective alternative by utilizing sparsely distributed probe vehicle data (PVD) provided by connected vehicles. However, as pointed out by the central limit theorem, the sparsification of PVD leads to the degradation of TFE accuracy. In response, this paper introduces a novel and cost-effective TFE framework that leverages sparse PVD and improves accuracy by applying the spatial-temporal generative artificial intelligence (GAI) framework. Within this framework, the conditional encoder mines spatial-temporal correlations in the initial TFE results derived from averaging vehicle speeds of each region, and the generative decoder generates high-quality and accurate TFE outputs. Additionally, the design of the spatial-temporal neural network is discussed, which is the backbone of the conditional encoder for effectively capturing spatial-temporal correlations. The effectiveness of the proposed TFE approach is demonstrated through evaluations based on real-world connected vehicle data. The experimental results affirm the feasibility of our sparse PVD-based TFE framework and highlight the significant role of the spatial-temporal GAI framework in enhancing the accuracy of TFE.
Abstract:The growing number of connected vehicles offers an opportunity to leverage internet of vehicles (IoV) data for traffic state estimation (TSE) which plays a crucial role in intelligent transportation systems (ITS). By utilizing only a portion of IoV data instead of the entire dataset, the significant overheads associated with collecting and processing large amounts of data can be avoided. In this paper, we introduce a novel framework that utilizes sparse IoV data to achieve cost-effective TSE. Particularly, we propose a novel spatial-temporal attention model called the convolutional retentive network (CRNet) to improve the TSE accuracy by mining spatial-temporal traffic state correlations. The model employs the convolutional neural network (CNN) for spatial correlation aggregation and the retentive network (RetNet) based on the attention mechanism to extract temporal correlations. Extensive simulations on a real-world IoV dataset validate the advantage of the proposed TSE approach in achieving accurate TSE using sparse IoV data, demonstrating its cost effectiveness and practicality for real-world applications.
Abstract:Integrated Sensing and Communications (ISAC) is one of the core technologies of 6G, which combines sensing and communication functions into a single system. However, limited computing and storage resources make it impractical to combine multiple sensing models into a single device, constraining the system's function and performance. Therefore, this article proposes enhancing ISAC with the mixture of experts (MoE) architecture. Rigorously, we first investigate ISAC and MoE, including their concepts, advantages, and applications. Then, we explore how MoE can enhance ISAC from the perspectives of signal processing and network optimization. Building on this, we propose an MoE based ISAC framework, which uses a gating network to selectively activate multiple experts in handling sensing tasks under given communication conditions, thereby improving the overall performance. The case study demonstrates that the proposed framework can effectively increase the accuracy and robustness in detecting targets by using wireless communication signal, providing strong support for the practical deployment and applications of the ISAC system.
Abstract:With the increasing of connected vehicles in the fifth-generation mobile communication networks (5G) and beyond 5G (B5G), ensuring the reliable and high-speed cellular vehicle-to-everything (C-V2X) communication has posed significant challenges due to the high mobility of vehicles. For improving the network performance and reliability, multi-connectivity technology has emerged as a crucial transmission mode for C-V2X in the 5G era. To this end, this paper proposes a framework for analyzing the performance of multi-connectivity in C-V2X downlink transmission, with a focus on the performance indicators of joint distance distribution and coverage probability. Specifically, we first derive the joint distance distribution of multi-connectivity. By leveraging the tools of stochastic geometry, we then obtain the analytical expressions of coverage probability based on the previous results for general multi-connectivity cases in C-V2X. Subsequently, we evaluate the effect of path loss exponent and downlink base station density on coverage probability based on the proposed analytical framework. Finally, extensive Monte Carlo simulations are conducted to validate the effectiveness of the proposed analytical framework and the simulation results reveal that multi-connectivity technology can significantly enhance the coverage probability in C-V2X.
Abstract:This paper firstly develops an analytical framework to investigate the performance of uplink (UL) / downlink (DL) decoupled access in cellular vehicle-to-everything (C-V2X) networks, in which a vehicle's UL/DL can be connected to different macro/small base stations (MBSs/SBSs) separately. Using the stochastic geometry analytical tool, the UL/DL decoupled access C-V2X is modeled as a Cox process, and we obtain the following theoretical results, i.e., 1) the probability of different UL/DL joint association cases i.e., both the UL and DL are associated with the different MBSs or SBSs, or they are associated with different types of BSs; 2) the distance distribution of a vehicle to its serving BSs in each case; 3) the spectral efficiency of UL/DL in each case; and 4) the UL/DL coverage probability of MBS/SBS. The analyses reveal the insights and performance gain of UL/DL decoupled access. Through extensive simulations, \textcolor{black}{the accuracy of the proposed analytical framework is validated.} Both the analytical and simulation results show that UL/DL decoupled access can improve spectral efficiency. The theoretical results can be directly used for estimating the statistical performance of a UL/DL decoupled access C-V2X network.
Abstract:Large pretrained language models (LLMs) have shown surprising In-Context Learning (ICL) ability. An important application in deploying large language models is to augment LLMs with a private database for some specific task. The main problem with this promising commercial use is that LLMs have been shown to memorize their training data and their prompt data are vulnerable to membership inference attacks (MIA) and prompt leaking attacks. In order to deal with this problem, we treat LLMs as untrusted in privacy and propose a locally differentially private framework of in-context learning(LDP-ICL) in the settings where labels are sensitive. Considering the mechanisms of in-context learning in Transformers by gradient descent, we provide an analysis of the trade-off between privacy and utility in such LDP-ICL for classification. Moreover, we apply LDP-ICL to the discrete distribution estimation problem. In the end, we perform several experiments to demonstrate our analysis results.
Abstract:With the ever-increasing number of connected vehicles in the fifth-generation mobile communication networks (5G) and beyond 5G (B5G), ensuring the reliability and high-speed demand of cellular vehicle-to-everything (C-V2X) communication in scenarios where vehicles are moving at high speeds poses a significant challenge.Recently, multi-connectivity technology has become a promising network access paradigm for improving network performance and reliability for C-V2X in the 5G and B5G era. To this end, this paper proposes an analytical framework for the performance of downlink in multi-connectivity C-V2X networks. Specifically, by modeling the vehicles and base stations as one-dimensional Poisson point processes, we first derive and analyze the joint distance distribution of multi-connectivity. Then through leveraging the tools of stochastic geometry, the coverage probability and spectral efficiency are obtained based on the previous results for general multi-connectivity cases in C-V2X. Additionally, we evaluate the effect of path loss exponent and the density of downlink base station on system performance indicators. We demonstrate through extensive Monte Carlo simulations that multi-connectivity technology can effectively enhance network performance in C-V2X. Our findings have important implications for the research and application of multi-connectivity C-V2X in the 5G and B5G era.
Abstract:Driven by the great advances in metaverse and edge computing technologies, vehicular edge metaverses are expected to disrupt the current paradigm of intelligent transportation systems. As highly computerized avatars of Vehicular Metaverse Users (VMUs), the Vehicle Twins (VTs) deployed in edge servers can provide valuable metaverse services to improve driving safety and on-board satisfaction for their VMUs throughout journeys. To maintain uninterrupted metaverse experiences, VTs must be migrated among edge servers following the movements of vehicles. This can raise concerns about privacy breaches during the dynamic communications among vehicular edge metaverses. To address these concerns and safeguard location privacy, pseudonyms as temporary identifiers can be leveraged by both VMUs and VTs to realize anonymous communications in the physical space and virtual spaces. However, existing pseudonym management methods fall short in meeting the extensive pseudonym demands in vehicular edge metaverses, thus dramatically diminishing the performance of privacy preservation. To this end, we present a cross-metaverse empowered dual pseudonym management framework. We utilize cross-chain technology to enhance management efficiency and data security for pseudonyms. Furthermore, we propose a metric to assess the privacy level and employ a Multi-Agent Deep Reinforcement Learning (MADRL) approach to obtain an optimal pseudonym generating strategy. Numerical results demonstrate that our proposed schemes are high-efficiency and cost-effective, showcasing their promising applications in vehicular edge metaverses.
Abstract:As the demand for high-quality services proliferates, an innovative network architecture, the fully-decoupled RAN (FD-RAN), has emerged for more flexible spectrum resource utilization and lower network costs. However, with the decoupling of uplink base stations and downlink base stations in FD-RAN, the traditional transmission mechanism, which relies on real-time channel feedback, is not suitable as the receiver is not able to feedback accurate and timely channel state information to the transmitter. This paper proposes a novel transmission scheme without relying on physical layer channel feedback. Specifically, we design a radio map based complex-valued precoding network~(RMCPNet) model, which outputs the base station precoding based on user location. RMCPNet comprises multiple subnets, with each subnet responsible for extracting unique modal features from diverse input modalities. Furthermore, the multi-modal embeddings derived from these distinct subnets are integrated within the information fusion layer, culminating in a unified representation. We also develop a specific RMCPNet training algorithm that employs the negative spectral efficiency as the loss function. We evaluate the performance of the proposed scheme on the public DeepMIMO dataset and show that RMCPNet can achieve 16\% and 76\% performance improvements over the conventional real-valued neural network and statistical codebook approach, respectively.