Abstract:Recently, the pre-training of decision transformers (DT) using a different domain, such as natural language text, has generated significant attention in offline reinforcement learning (Offline RL). Although this cross-domain pre-training approach achieves superior performance compared to training from scratch in environments required short-term planning ability, the mechanisms by which pre-training benefits the fine-tuning phase remain unclear. Furthermore, we point out that the cross-domain pre-training approach hinders the extraction of distant information in environments like PointMaze that require long-term planning ability, leading to performance that is much worse than training DT from scratch. This work first analyzes these issues and found that Markov Matrix, a component that exists in pre-trained attention heads, is the key to explain the significant performance disparity of pre-trained models in different planning abilities. Inspired by our analysis, we propose a general method GPT-DTMA, which equips a pre-trained DT with Mixture of Attention (MoA), to enable adaptive learning and accommodating diverse attention requirements during fine-tuning. Extensive experiments demonstrate that the effectiveness of GPT-DTMA: it achieves superior performance in short-term environments compared to baselines, and in long-term environments, it mitigates the negative impact caused by Markov Matrix, achieving results comparable to those of DT trained from scratch.
Abstract:Large pretrained language models (LLMs) have shown surprising In-Context Learning (ICL) ability. An important application in deploying large language models is to augment LLMs with a private database for some specific task. The main problem with this promising commercial use is that LLMs have been shown to memorize their training data and their prompt data are vulnerable to membership inference attacks (MIA) and prompt leaking attacks. In order to deal with this problem, we treat LLMs as untrusted in privacy and propose a locally differentially private framework of in-context learning(LDP-ICL) in the settings where labels are sensitive. Considering the mechanisms of in-context learning in Transformers by gradient descent, we provide an analysis of the trade-off between privacy and utility in such LDP-ICL for classification. Moreover, we apply LDP-ICL to the discrete distribution estimation problem. In the end, we perform several experiments to demonstrate our analysis results.
Abstract:Multi-modal entity alignment (MMEA) aims to identify equivalent entities between two multi-modal knowledge graphs for integration. Unfortunately, prior arts have attempted to improve the interaction and fusion of multi-modal information, which have overlooked the influence of modal-specific noise and the usage of labeled and unlabeled data in semi-supervised settings. In this work, we introduce a Pseudo-label Calibration Multi-modal Entity Alignment (PCMEA) in a semi-supervised way. Specifically, in order to generate holistic entity representations, we first devise various embedding modules and attention mechanisms to extract visual, structural, relational, and attribute features. Different from the prior direct fusion methods, we next propose to exploit mutual information maximization to filter the modal-specific noise and to augment modal-invariant commonality. Then, we combine pseudo-label calibration with momentum-based contrastive learning to make full use of the labeled and unlabeled data, which improves the quality of pseudo-label and pulls aligned entities closer. Finally, extensive experiments on two MMEA datasets demonstrate the effectiveness of our PCMEA, which yields state-of-the-art performance.
Abstract:We propose an efficient deep learning method for single image defocus deblurring (SIDD) by further exploring inverse kernel properties. Although the current inverse kernel method, i.e., kernel-sharing parallel atrous convolution (KPAC), can address spatially varying defocus blurs, it has difficulty in handling large blurs of this kind. To tackle this issue, we propose a Residual and Recursive Kernel-sharing Atrous Convolution (R$^2$KAC). R$^2$KAC builds on a significant observation of inverse kernels, that is, successive use of inverse-kernel-based deconvolutions with fixed size helps remove unexpected large blurs but produces ringing artifacts. Specifically, on top of kernel-sharing atrous convolutions used to simulate multi-scale inverse kernels, R$^2$KAC applies atrous convolutions recursively to simulate a large inverse kernel. Specifically, on top of kernel-sharing atrous convolutions, R$^2$KAC stacks atrous convolutions recursively to simulate a large inverse kernel. To further alleviate the contingent effect of recursive stacking, i.e., ringing artifacts, we add identity shortcuts between atrous convolutions to simulate residual deconvolutions. Lastly, a scale recurrent module is embedded in the R$^2$KAC network, leading to SR-R$^2$KAC, so that multi-scale information from coarse to fine is exploited to progressively remove the spatially varying defocus blurs. Extensive experimental results show that our method achieves the state-of-the-art performance.
Abstract:In this paper, we provide two views of constrained differential private (DP) mechanisms. The first one is as belief revision. A constrained DP mechanism is obtained by standard probabilistic conditioning, and hence can be naturally implemented by Monte Carlo algorithms. The other is as belief update. A constrained DP is defined according to l2-distance minimization postprocessing or projection and hence can be naturally implemented by optimization algorithms. The main advantage of these two perspectives is that we can make full use of the machinery of belief revision and update to show basic properties for constrained differential privacy especially some important new composition properties. Within the framework established in this paper, constrained DP algorithms in the literature can be classified either as belief revision or belief update. At the end of the paper, we demonstrate their differences especially in utility in a couple of scenarios.