Abstract:Retrieval-Augmented Generation (RAG), while serving as a viable complement to large language models (LLMs), often overlooks the crucial aspect of text chunking within its pipeline, which impacts the quality of knowledge-intensive tasks. This paper introduces the concept of Meta-Chunking, which refers to a granularity between sentences and paragraphs, consisting of a collection of sentences within a paragraph that have deep linguistic logical connections. To implement Meta-Chunking, we designed two strategies based on LLMs: Margin Sampling Chunking and Perplexity Chunking. The former employs LLMs to perform binary classification on whether consecutive sentences need to be segmented, making decisions based on the probability difference obtained from margin sampling. The latter precisely identifies text chunk boundaries by analyzing the characteristics of perplexity distribution. Additionally, considering the inherent complexity of different texts, we propose a strategy that combines Meta-Chunking with dynamic merging to achieve a balance between fine-grained and coarse-grained text chunking. Experiments conducted on eleven datasets demonstrate that Meta-Chunking can more efficiently improve the performance of single-hop and multi-hop question answering based on RAG. For instance, on the 2WikiMultihopQA dataset, it outperforms similarity chunking by 1.32 while only consuming 45.8% of the time. Our code is available at https://github.com/IAAR-Shanghai/Meta-Chunking.
Abstract:Multi-modal entity alignment (MMEA) aims to identify equivalent entities between two multi-modal knowledge graphs for integration. Unfortunately, prior arts have attempted to improve the interaction and fusion of multi-modal information, which have overlooked the influence of modal-specific noise and the usage of labeled and unlabeled data in semi-supervised settings. In this work, we introduce a Pseudo-label Calibration Multi-modal Entity Alignment (PCMEA) in a semi-supervised way. Specifically, in order to generate holistic entity representations, we first devise various embedding modules and attention mechanisms to extract visual, structural, relational, and attribute features. Different from the prior direct fusion methods, we next propose to exploit mutual information maximization to filter the modal-specific noise and to augment modal-invariant commonality. Then, we combine pseudo-label calibration with momentum-based contrastive learning to make full use of the labeled and unlabeled data, which improves the quality of pseudo-label and pulls aligned entities closer. Finally, extensive experiments on two MMEA datasets demonstrate the effectiveness of our PCMEA, which yields state-of-the-art performance.