Abstract:Machine learning techniques have garnered great interest in designing communication systems owing to their capacity in tacking with channel uncertainty. To provide theoretical guarantees for learning-based communication systems, some recent works analyze generalization bounds for devised methods based on the assumption of Independently and Identically Distributed (I.I.D.) channels, a condition rarely met in practical scenarios. In this paper, we drop the I.I.D. channel assumption and study an online optimization problem of learning to communicate over time-correlated channels. To address this issue, we further focus on two specific tasks: optimizing channel decoders for time-correlated fading channels and selecting optimal codebooks for time-correlated additive noise channels. For utilizing temporal dependence of considered channels to better learn communication systems, we develop two online optimization algorithms based on the optimistic online mirror descent framework. Furthermore, we provide theoretical guarantees for proposed algorithms via deriving sub-linear regret bound on the expected error probability of learned systems. Extensive simulation experiments have been conducted to validate that our presented approaches can leverage the channel correlation to achieve a lower average symbol error rate compared to baseline methods, consistent with our theoretical findings.
Abstract:With the impressive achievements of chatGPT and Sora, generative artificial intelligence (GAI) has received increasing attention. Not limited to the field of content generation, GAI is also widely used to solve the problems in wireless communication scenarios due to its powerful learning and generalization capabilities. Therefore, we discuss key applications of GAI in improving unmanned aerial vehicle (UAV) communication and networking performance in this article. Specifically, we first review the key technologies of GAI and the important roles of UAV networking. Then, we show how GAI can improve the communication, networking, and security performances of UAV systems. Subsequently, we propose a novel framework of GAI for advanced UAV networking, and then present a case study of UAV-enabled spectrum map estimation and transmission rate optimization based on the proposed framework to verify the effectiveness of GAI-enabled UAV systems. Finally, we discuss some important open directions.
Abstract:This paper presents an optimization approach for cooperative Medium Access Control (MAC) techniques in Vehicular Ad Hoc Networks (VANETs) equipped with Roadside Unit (RSU) to enhance network throughput. Our method employs a distributed cooperative MAC scheme based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol, featuring selective RSU probing and adaptive transmission. It utilizes a dual timescale channel access framework, with a ``large-scale'' phase accounting for gradual changes in vehicle locations and a ``small-scale'' phase adapting to rapid channel fluctuations. We propose the RSU Probing and Cooperative Access (RPCA) strategy, a two-stage approach based on dynamic inter-vehicle distances from the RSU. Using optimal sequential planned decision theory, we rigorously prove its optimality in maximizing average system throughput per large-scale phase. For practical implementation in VANETs, we develop a distributed MAC algorithm with periodic location updates. It adjusts thresholds based on inter-vehicle and vehicle-RSU distances during the large-scale phase and accesses channels following the RPCA strategy with updated thresholds during the small-scale phase. Simulation results confirm the effectiveness and efficiency of our algorithm.
Abstract:We consider a wireless networked control system (WNCS) with bidirectional imperfect links for real-time applications such as smart grids. To maintain the stability of WNCS, captured by the probability that plant state violates preset values, at minimal cost, heterogeneous physical processes are monitored by multiple sensors. This status information, such as dynamic plant state and Markov Process-based context information, is then received/estimated by the controller for remote control. However, scheduling multiple sensors and designing the controller with limited resources is challenging due to their coupling, delay, and transmission loss. We formulate a Constrained Markov Decision Problem (CMDP) to minimize violation probability with cost constraints. We reveal the relationship between the goal and different updating actions by analyzing the significance of information that incorporates goal-related usefulness and contextual importance. Subsequently, a goal-oriented deterministic scheduling policy is proposed. Two sensing-assisted control strategies and a control-aware estimation policy are proposed to improve the violation probability-cost tradeoff, integrated with the scheduling policy to form a goal-oriented co-design framework. Additionally, we explore retransmission in downlink transmission and qualitatively analyze its preference scenario. Simulation results demonstrate that the proposed goal-oriented co-design policy outperforms previous work in simultaneously reducing violation probability and cost
Abstract:Driven by the development goal of network paradigm and demand for various functions in the sixth-generation (6G) mission-critical Internet-of-Things (MC-IoT), we foresee a goal-oriented integration of sensing, communication, computing, and control (GIS3C) in this paper. We first provide an overview of the tasks, requirements, and challenges of MC-IoT. Then we introduce an end-to-end GIS3C architecture, in which goal-oriented communication is leveraged to bridge and empower sensing, communication, control, and computing functionalities. By revealing the interplay among multiple subsystems in terms of key performance indicators and parameters, this paper introduces unified metrics, i.e., task completion effectiveness and cost, to facilitate S3C co-design in MC-IoT. The preliminary results demonstrate the benefits of GIS3C in improving task completion effectiveness while reducing costs. We also identify and highlight the gaps and challenges in applying GIS3C in the future 6G networks.
Abstract:In opportunistic cognitive radio networks, when the primary signal is very weak compared to the background noise, the secondary user requires long sensing time to achieve a reliable spectrum sensing performance, leading to little remaining time for the secondary transmission. To tackle this issue, we propose an active reconfigurable intelligent surface (RIS) assisted spectrum sensing system, where the received signal strength from the interested primary user can be enhanced and underlying interference within the background noise can be mitigated as well. In comparison with the passive RIS, the active RIS can not only adapt the phase shift of each reflecting element but also amplify the incident signals. Notably, we study the reflecting coefficient matrix (RCM) optimization problem to improve the detection probability given a maximum tolerable false alarm probability and limited sensing time. Then, we show that the formulated problem can be equivalently transformed to a weighted mean square error minimization problem using the principle of the well-known weighted minimum mean square error (WMMSE) algorithm, and an iterative optimization approach is proposed to obtain the optimal RCM. In addition, to fairly compare passive RIS and active RIS, we study the required power budget of the RIS to achieve a target detection probability under a special case where the direct links are neglected and the RIS-related channels are line-of-sight. Via extensive simulations, the effectiveness of the WMMSE-based RCM optimization approach is demonstrated. Furthermore, the results reveal that the active RIS can outperform the passive RIS when the underlying interference within the background noise is relatively weak, whereas the passive RIS performs better in strong interference scenarios because the same power budget can support a vast number of passive reflecting elements for interference mitigation.
Abstract:Symbiotic radio (SR) is a promising technique to support cellular Internet-of-Things (IoT) by forming a mutualistic relationship between IoT and cellular transmissions. In this paper, we propose a novel multi-user multi-IoT-device SR system to enable massive access in cellular IoT. In the considered system, the base station (BS) transmits information to multiple cellular users, and a number of IoT devices simultaneously backscatter their information to these users via the cellular signal. The cellular users jointly decode the information from the BS and IoT devices. Noting that the reflective links from the IoT devices can be regarded as the channel uncertainty of the direct links, we apply the robust design method to design the beamforming vectors at the BS. Specifically, the transmit power is minimized under the cellular transmission outage probability constraints and IoT transmission sum rate constraints. The algorithm based on semi-definite programming and difference-of-convex programming is proposed to solve the power minimization problem. Moreover, we consider a special case where each cellular user is associated with several adjacent IoT devices and propose a direction of arrival (DoA)-based transmit beamforming design approach. The DoA-based approach requires only the DoA and angular spread (AS) of the direct links instead of the instantaneous channel state information (CSI) of the reflective link channels, leading to a significant reduction in the channel feedback overhead. Simulation results have substantiated the multi-user multi-IoT-device SR system and the effectiveness of the proposed beamforming approaches. It is shown that the DoA-based beamforming approach achieves comparable performance as the CSI-based approach in the special case when the ASs are small.
Abstract:Accurate perception is essential for advancing autonomous driving and addressing safety challenges in modern transportation systems. Despite significant advancements in computer vision for object recognition, current perception methods still face difficulties in complex real-world traffic environments. Challenges such as physical occlusion and limited sensor field of view persist for individual vehicle systems. Cooperative Perception (CP) with Vehicle-to-Everything (V2X) technologies has emerged as a solution to overcome these obstacles and enhance driving automation systems. While some research has explored CP's fundamental architecture and critical components, there remains a lack of comprehensive summaries of the latest innovations, particularly in the context of V2X communication technologies. To address this gap, this paper provides a comprehensive overview of the evolution of CP technologies, spanning from early explorations to recent developments, including advancements in V2X communication technologies. Additionally, a contemporary generic framework is proposed to illustrate the V2X-based CP workflow, aiding in the structured understanding of CP system components. Furthermore, this paper categorizes prevailing V2X-based CP methodologies based on the critical issues they address. An extensive literature review is conducted within this taxonomy, evaluating existing datasets and simulators. Finally, open challenges and future directions in CP for autonomous driving are discussed by considering both perception and V2X communication advancements.
Abstract:Space-time shift keying-aided orthogonal time frequency space modulation-based multiple access (STSK-OTFS-MA) is proposed for reliable uplink transmission in high-Doppler scenarios. As a beneficial feature of our STSK-OTFS-MA system, extra information bits are mapped onto the indices of the active dispersion matrices, which allows the system to enjoy the joint benefits of both STSK and OTFS signalling. Due to the fact that both the time-, space- and DD-domain degrees of freedom are jointly exploited, our STSK-OTFS-MA achieves increased diversity and coding gains. To mitigate the potentially excessive detection complexity, the sparse structure of the equivalent transmitted symbol vector is exploited, resulting in a pair of low-complexity near-maximum likelihood (ML) multiuser detection algorithms. Explicitly, we conceive a progressive residual check-based greedy detector (PRCGD) and an iterative reduced-space check-based detector (IRCD). Then, we derive both the unconditional single-user pairwise error probability (SU-UPEP) and a tight bit error ratio (BER) union-bound for our single-user STSK-OTFS-MA system employing the ML detector. Furthermore, the discrete-input continuous-output memoryless channel (DCMC) capacity of the proposed system is derived. The optimal dispersion matrices (DMs) are designed based on the maximum attainable diversity and coding gain metrics. Finally, it is demonstrated that our STSK-OTFS-MA system achieves both a lower BER and a higher DCMC capacity than its conventional spatial modulation (SM) {and its orthogonal frequency-division multiplexing (OFDM) counterparts. As a benefit, the proposed system strikes a compelling BER vs. system complexity as well as BER vs. detection complexity trade-offs.
Abstract:Millimeter-wave (mmWave) signals provide attractive opportunities for sensing due to their inherent geometrical connections to physical propagation channels. Two common modalities used in mmWave sensing are monostatic and bistatic sensing, which are usually considered separately. By integrating these two modalities, information can be shared between them, leading to improved sensing performance. In this paper, we investigate the integration of monostatic and bistatic sensing in a 5G mmWave scenario, implement the extended Kalman-Poisson multi-Bernoulli sequential filters to solve the sensing problems, and propose a method to periodically fuse user states and maps from two sensing modalities.