Abstract:Internet of Things (IoT) devices are typically powered by small-sized batteries with limited energy storage capacity, requiring regular replacement or recharging. To reduce costs and maintain connectivity in IoT networks, energy harvesting technologies are regarded as a promising solution. Notably, due to its robust analytical and generative capabilities, generative artificial intelligence (GenAI) has demonstrated significant potential in optimizing energy harvesting networks. Therefore, we discuss key applications of GenAI in improving energy harvesting wireless networks for IoT in this article. Specifically, we first review the key technologies of GenAI and the architecture of energy harvesting wireless networks. Then, we show how GenAI can address different problems to improve the performance of the energy harvesting wireless networks. Subsequently, we present a case study of unmanned aerial vehicle (UAV)-enabled data collection and energy transfer. The case study shows distinctively the necessity of energy harvesting technology and verify the effectiveness of GenAI-based methods. Finally, we discuss some important open directions.
Abstract:As a form of artificial intelligence (AI) technology based on interactive learning, deep reinforcement learning (DRL) has been widely applied across various fields and has achieved remarkable accomplishments. However, DRL faces certain limitations, including low sample efficiency and poor generalization. Therefore, we present how to leverage generative AI (GAI) to address these issues above and enhance the performance of DRL algorithms in this paper. We first introduce several classic GAI and DRL algorithms and demonstrate the applications of GAI-enhanced DRL algorithms. Then, we discuss how to use GAI to improve DRL algorithms from the data and policy perspectives. Subsequently, we introduce a framework that demonstrates an actual and novel integration of GAI with DRL, i.e., GAI-enhanced DRL. Additionally, we provide a case study of the framework on UAV-assisted integrated near-field/far-field communication to validate the performance of the proposed framework. Moreover, we present several future directions. Finally, the related code is available at: https://xiewenwen22.github.io/GAI-enhanced-DRL.
Abstract:With the impressive achievements of chatGPT and Sora, generative artificial intelligence (GAI) has received increasing attention. Not limited to the field of content generation, GAI is also widely used to solve the problems in wireless communication scenarios due to its powerful learning and generalization capabilities. Therefore, we discuss key applications of GAI in improving unmanned aerial vehicle (UAV) communication and networking performance in this article. Specifically, we first review the key technologies of GAI and the important roles of UAV networking. Then, we show how GAI can improve the communication, networking, and security performances of UAV systems. Subsequently, we propose a novel framework of GAI for advanced UAV networking, and then present a case study of UAV-enabled spectrum map estimation and transmission rate optimization based on the proposed framework to verify the effectiveness of GAI-enabled UAV systems. Finally, we discuss some important open directions.