Abstract:Integrating multi-modal clinical data, such as electronic health records (EHR) and chest X-ray images (CXR), is particularly beneficial for clinical prediction tasks. However, in a temporal setting, multi-modal data are often inherently asynchronous. EHR can be continuously collected but CXR is generally taken with a much longer interval due to its high cost and radiation dose. When clinical prediction is needed, the last available CXR image might have been outdated, leading to suboptimal predictions. To address this challenge, we propose DDL-CXR, a method that dynamically generates an up-to-date latent representation of the individualized CXR images. Our approach leverages latent diffusion models for patient-specific generation strategically conditioned on a previous CXR image and EHR time series, providing information regarding anatomical structures and disease progressions, respectively. In this way, the interaction across modalities could be better captured by the latent CXR generation process, ultimately improving the prediction performance. Experiments using MIMIC datasets show that the proposed model could effectively address asynchronicity in multimodal fusion and consistently outperform existing methods.
Abstract:Rapid growth of high-dimensional datasets in fields such as single-cell RNA sequencing and spatial genomics has led to unprecedented opportunities for scientific discovery, but it also presents unique computational and statistical challenges. Traditional methods struggle with geometry-aware data generation, interpolation along meaningful trajectories, and transporting populations via feasible paths. To address these issues, we introduce Geometry-Aware Generative Autoencoder (GAGA), a novel framework that combines extensible manifold learning with generative modeling. GAGA constructs a neural network embedding space that respects the intrinsic geometries discovered by manifold learning and learns a novel warped Riemannian metric on the data space. This warped metric is derived from both the points on the data manifold and negative samples off the manifold, allowing it to characterize a meaningful geometry across the entire latent space. Using this metric, GAGA can uniformly sample points on the manifold, generate points along geodesics, and interpolate between populations across the learned manifold. GAGA shows competitive performance in simulated and real world datasets, including a 30% improvement over the state-of-the-art methods in single-cell population-level trajectory inference.
Abstract:The proliferation of digital microscopy images, driven by advances in automated whole slide scanning, presents significant opportunities for biomedical research and clinical diagnostics. However, accurately annotating densely packed information in these images remains a major challenge. To address this, we introduce DiffKillR, a novel framework that reframes cell annotation as the combination of archetype matching and image registration tasks. DiffKillR employs two complementary neural networks: one that learns a diffeomorphism-invariant feature space for robust cell matching and another that computes the precise warping field between cells for annotation mapping. Using a small set of annotated archetypes, DiffKillR efficiently propagates annotations across large microscopy images, reducing the need for extensive manual labeling. More importantly, it is suitable for any type of pixel-level annotation. We will discuss the theoretical properties of DiffKillR and validate it on three microscopy tasks, demonstrating its advantages over existing supervised, semi-supervised, and unsupervised methods.
Abstract:In many data-driven applications, higher-order relationships among multiple objects are essential in capturing complex interactions. Hypergraphs, which generalize graphs by allowing edges to connect any number of nodes, provide a flexible and powerful framework for modeling such higher-order relationships. In this work, we introduce hypergraph diffusion wavelets and describe their favorable spectral and spatial properties. We demonstrate their utility for biomedical discovery in spatially resolved transcriptomics by applying the method to represent disease-relevant cellular niches for Alzheimer's disease.
Abstract:GUI test migration aims to produce test cases with events and assertions to test specific functionalities of a target app. Existing migration approaches typically focus on the widget-mapping paradigm that maps widgets from source apps to target apps. However, since different apps may implement the same functionality in different ways, direct mapping may result in incomplete or buggy test cases, thus significantly impacting the effectiveness of testing target functionality and the practical applicability. In this paper, we propose a new migration paradigm (i.e., abstraction-concretization paradigm) that first abstracts the test logic for the target functionality and then utilizes this logic to generate the concrete GUI test case. Furthermore, we introduce MACdroid, the first approach that migrates GUI test cases based on this paradigm. Specifically, we propose an abstraction technique that utilizes source test cases from source apps targeting the same functionality to extract a general test logic for that functionality. Then, we propose a concretization technique that utilizes the general test logic to guide an LLM in generating the corresponding GUI test case (including events and assertions) for the target app. We evaluate MACdroid on two widely-used datasets (including 31 apps, 34 functionalities, and 123 test cases). On the FrUITeR dataset, the test cases generated by MACdroid successfully test 64% of the target functionalities, improving the baselines by 191%. On the Lin dataset, MACdroid successfully tests 75% of the target functionalities, outperforming the baselines by 42%. These results underscore the effectiveness of MACdroid in GUI test migration.
Abstract:Gesture recognition based on surface electromyography (sEMG) has achieved significant progress in human-machine interaction (HMI). However, accurately recognizing predefined gestures within a closed set is still inadequate in practice; a robust open-set system needs to effectively reject unknown gestures while correctly classifying known ones. To handle this challenge, we first report prediction inconsistency discovered for unknown classes due to ensemble diversity, which can significantly facilitate the detection of unknown classes. Based on this insight, we propose an ensemble learning approach, PredIN, to explicitly magnify the prediction inconsistency by enhancing ensemble diversity. Specifically, PredIN maximizes the class feature distribution inconsistency among ensemble members to enhance diversity. Meanwhile, it optimizes inter-class separability within an individual ensemble member to maintain individual performance. Comprehensive experiments on various benchmark datasets demonstrate that the PredIN outperforms state-of-the-art methods by a clear margin.Our proposed method simultaneously achieves accurate closed-set classification for predefined gestures and effective rejection for unknown gestures, exhibiting its efficacy and superiority in open-set gesture recognition based on sEMG.
Abstract:Affective Behavior Analysis aims to develop emotionally intelligent technology that can recognize and respond to human emotions. To advance this, the 7th Affective Behavior Analysis in-the-wild (ABAW) competition establishes two tracks: i.e., the Multi-task Learning (MTL) Challenge and the Compound Expression (CE) challenge based on Aff-Wild2 and C-EXPR-DB datasets. In this paper, we present our methods and experimental results for the two competition tracks. Specifically, it can be summarized in the following four aspects: 1) To attain high-quality facial features, we train a Masked-Auto Encoder in a self-supervised manner. 2) We devise a temporal convergence module to capture the temporal information between video frames and explore the impact of window size and sequence length on each sub-task. 3) To facilitate the joint optimization of various sub-tasks, we explore the impact of sub-task joint training and feature fusion from individual tasks on each task performance improvement. 4) We utilize curriculum learning to transition the model from recognizing single expressions to recognizing compound expressions, thereby improving the accuracy of compound expression recognition. Extensive experiments demonstrate the superiority of our designs.
Abstract:Existing Masked Image Modeling (MIM) depends on a spatial patch-based masking-reconstruction strategy to perceive objects'features from unlabeled images, which may face two limitations when applied to chest CT: 1) inefficient feature learning due to complex anatomical details presented in CT images, and 2) suboptimal knowledge transfer owing to input disparity between upstream and downstream models. To address these issues, we propose a new MIM method named Tissue-Contrastive Semi-Masked Autoencoder (TCS-MAE) for modeling chest CT images. Our method has two novel designs: 1) a tissue-based masking-reconstruction strategy to capture more fine-grained anatomical features, and 2) a dual-AE architecture with contrastive learning between the masked and original image views to bridge the gap of the upstream and downstream models. To validate our method, we systematically investigate representative contrastive, generative, and hybrid self-supervised learning methods on top of tasks involving segmenting pneumonia, mediastinal tumors, and various organs. The results demonstrate that, compared to existing methods, our TCS-MAE more effectively learns tissue-aware representations, thereby significantly enhancing segmentation performance across all tasks.
Abstract:We present a novel approach called differentially private stochastic block coordinate descent (DP-SBCD) for training neural networks with provable guarantees of differential privacy under the hidden state assumption. Our methodology incorporates Lipschitz neural networks and decomposes the training process of the neural network into sub-problems, each corresponding to the training of a specific layer. By doing so, we extend the analysis of differential privacy under the hidden state assumption to encompass non-convex problems and algorithms employing proximal gradient descent. Furthermore, in contrast to existing methods, we adopt a novel approach by utilizing calibrated noise sampled from adaptive distributions, yielding improved empirical trade-offs between utility and privacy.
Abstract:We introduce an approach to bias deep generative models, such as GANs and diffusion models, towards generating data with either enhanced fidelity or increased diversity. Our approach involves manipulating the distribution of training and generated data through a novel metric for individual samples, named pseudo density, which is based on the nearest-neighbor information from real samples. Our approach offers three distinct techniques to adjust the fidelity and diversity of deep generative models: 1) Per-sample perturbation, enabling precise adjustments for individual samples towards either more common or more unique characteristics; 2) Importance sampling during model inference to enhance either fidelity or diversity in the generated data; 3) Fine-tuning with importance sampling, which guides the generative model to learn an adjusted distribution, thus controlling fidelity and diversity. Furthermore, our fine-tuning method demonstrates the ability to improve the Frechet Inception Distance (FID) for pre-trained generative models with minimal iterations.