Abstract:Sewing patterns, the essential blueprints for fabric cutting and tailoring, act as a crucial bridge between design concepts and producible garments. However, existing uni-modal sewing pattern generation models struggle to effectively encode complex design concepts with a multi-modal nature and correlate them with vectorized sewing patterns that possess precise geometric structures and intricate sewing relations. In this work, we propose a novel sewing pattern generation approach Design2GarmentCode based on Large Multimodal Models (LMMs), to generate parametric pattern-making programs from multi-modal design concepts. LMM offers an intuitive interface for interpreting diverse design inputs, while pattern-making programs could serve as well-structured and semantically meaningful representations of sewing patterns, and act as a robust bridge connecting the cross-domain pattern-making knowledge embedded in LMMs with vectorized sewing patterns. Experimental results demonstrate that our method can flexibly handle various complex design expressions such as images, textual descriptions, designer sketches, or their combinations, and convert them into size-precise sewing patterns with correct stitches. Compared to previous methods, our approach significantly enhances training efficiency, generation quality, and authoring flexibility. Our code and data will be publicly available.
Abstract:Analyses of human motion kinematics have achieved tremendous advances. However, the production mechanism, known as human dynamics, is still undercovered. In this paper, we aim to push data-driven human dynamics understanding forward. We identify a major obstacle to this as the heterogeneity of existing human motion understanding efforts. Specifically, heterogeneity exists in not only the diverse kinematics representations and hierarchical dynamics representations but also in the data from different domains, namely biomechanics and reinforcement learning. With an in-depth analysis of the existing heterogeneity, we propose to emphasize the beneath homogeneity: all of them represent the homogeneous fact of human motion, though from different perspectives. Given this, we propose Homogeneous Dynamics Space (HDyS) as a fundamental space for human dynamics by aggregating heterogeneous data and training a homogeneous latent space with inspiration from the inverse-forward dynamics procedure. Leveraging the heterogeneous representations and datasets, HDyS achieves decent mapping between human kinematics and dynamics. We demonstrate the feasibility of HDyS with extensive experiments and applications. The project page is https://foruck.github.io/HDyS.
Abstract:Multimodal Large Language Models (MLLMs) have garnered significant attention recently and demonstrate outstanding capabilities in various tasks such as OCR, VQA, captioning, $\textit{etc}$. However, hallucination remains a persistent issue. While numerous methods have been proposed to mitigate hallucinations, achieving notable improvements, these methods primarily focus on mitigating hallucinations about $\textbf{object/noun-related}$ concepts. Verb concepts, crucial for understanding human actions, have been largely overlooked. In this paper, to the best of our knowledge, we are the $\textbf{first}$ to investigate the $\textbf{verb hallucination}$ phenomenon of MLLMs from various perspectives. Our findings reveal that most state-of-the-art MLLMs suffer from severe verb hallucination. To assess the effectiveness of existing mitigation methods for object concept hallucination on verb hallucination, we evaluated these methods and found that they do not effectively address verb hallucination. To address this issue, we propose a novel rich verb knowledge-based tuning method to mitigate verb hallucination. The experiment results demonstrate that our method significantly reduces hallucinations related to verbs. $\textit{Our code and data will be made publicly available}$.
Abstract:Inferring object motion representations from observations enhances the performance of robotic manipulation tasks. This paper introduces a new paradigm for robot imitation learning that generates action sequences by reasoning about object motion from visual observations. We propose MBA (Motion Before Action), a novel module that employs two cascaded diffusion processes for object motion generation and robot action generation under object motion guidance. MBA first predicts the future pose sequence of the object based on observations, then uses this sequence as a condition to guide robot action generation. Designed as a plug-and-play component, MBA can be flexibly integrated into existing robotic manipulation policies with diffusion action heads. Extensive experiments in both simulated and real-world environments demonstrate that our approach substantially improves the performance of existing policies across a wide range of manipulation tasks.
Abstract:Inverse dynamics (ID), which aims at reproducing the driven torques from human kinematic observations, has been a critical tool for gait analysis. However, it is hindered from wider application to general motion due to its limited scalability. Conventional optimization-based ID requires expensive laboratory setups, restricting its availability. To alleviate this problem, we propose to exploit the recently progressive human motion imitation algorithms to learn human inverse dynamics in a data-driven manner. The key insight is that the human ID knowledge is implicitly possessed by motion imitators, though not directly applicable. In light of this, we devise an efficient data collection pipeline with state-of-the-art motion imitation algorithms and physics simulators, resulting in a large-scale human inverse dynamics benchmark as Imitated Dynamics (ImDy). ImDy contains over 150 hours of motion with joint torque and full-body ground reaction force data. With ImDy, we train a data-driven human inverse dynamics solver ImDyS(olver) in a fully supervised manner, which conducts ID and ground reaction force estimation simultaneously. Experiments on ImDy and real-world data demonstrate the impressive competency of ImDyS in human inverse dynamics and ground reaction force estimation. Moreover, the potential of ImDy(-S) as a fundamental motion analysis tool is exhibited with downstream applications. The project page is https://foruck.github.io/ImDy/.
Abstract:Multi-modal Large Language Models (MLLMs) have exhibited impressive capability. However, recently many deficiencies of MLLMs have been found compared to human intelligence, $\textit{e.g.}$, hallucination. To drive the MLLMs study, the community dedicated efforts to building larger benchmarks with complex tasks. In this paper, we propose benchmarking an essential but usually overlooked intelligence: $\textbf{association}$, a human's basic capability to link observation and prior practice memory. To comprehensively investigate MLLM's performance on the association, we formulate the association task and devise a standard benchmark based on adjective and verb semantic concepts. Instead of costly data annotation and curation, we propose a convenient $\textbf{annotation-free}$ construction method transforming the general dataset for our association tasks. Simultaneously, we devise a rigorous data refinement process to eliminate confusion in the raw dataset. Building on this database, we establish three levels of association tasks: single-step, synchronous, and asynchronous associations. Moreover, we conduct a comprehensive investigation into the MLLMs' zero-shot association capabilities, addressing multiple dimensions, including three distinct memory strategies, both open-source and closed-source MLLMs, cutting-edge Mixture-of-Experts (MoE) models, and the involvement of human experts. Our systematic investigation shows that current open-source MLLMs consistently exhibit poor capability in our association tasks, even the currently state-of-the-art GPT-4V(vision) also has a significant gap compared to humans. We believe our benchmark would pave the way for future MLLM studies. $\textit{Our data and code are available at:}$ https://mvig-rhos.com/llm_inception.
Abstract:Visual reasoning, as a prominent research area, plays a crucial role in AI by facilitating concept formation and interaction with the world. However, current works are usually carried out separately on small datasets thus lacking generalization ability. Through rigorous evaluation of diverse benchmarks, we demonstrate the shortcomings of existing ad-hoc methods in achieving cross-domain reasoning and their tendency to data bias fitting. In this paper, we revisit visual reasoning with a two-stage perspective: (1) symbolization and (2) logical reasoning given symbols or their representations. We find that the reasoning stage is better at generalization than symbolization. Thus, it is more efficient to implement symbolization via separated encoders for different data domains while using a shared reasoner. Given our findings, we establish design principles for visual reasoning frameworks following the separated symbolization and shared reasoning. The proposed two-stage framework achieves impressive generalization ability on various visual reasoning tasks, including puzzles, physical prediction, and visual question answering (VQA), encompassing both 2D and 3D modalities. We believe our insights will pave the way for generalizable visual reasoning.
Abstract:Building a general-purpose intelligent home-assistant agent skilled in diverse tasks by human commands is a long-term blueprint of embodied AI research, which poses requirements on task planning, environment modeling, and object interaction. In this work, we study primitive mobile manipulations for embodied agents, i.e. how to navigate and interact based on an instructed verb-noun pair. We propose DISCO, which features non-trivial advancements in contextualized scene modeling and efficient controls. In particular, DISCO incorporates differentiable scene representations of rich semantics in object and affordance, which is dynamically learned on the fly and facilitates navigation planning. Besides, we propose dual-level coarse-to-fine action controls leveraging both global and local cues to accomplish mobile manipulation tasks efficiently. DISCO easily integrates into embodied tasks such as embodied instruction following. To validate our approach, we take the ALFRED benchmark of large-scale long-horizon vision-language navigation and interaction tasks as a test bed. In extensive experiments, we make comprehensive evaluations and demonstrate that DISCO outperforms the art by a sizable +8.6% success rate margin in unseen scenes, even without step-by-step instructions. Our code is publicly released at https://github.com/AllenXuuu/DISCO.
Abstract:Employing a teleoperation system for gathering demonstrations offers the potential for more efficient learning of robot manipulation. However, teleoperating a robot arm equipped with a dexterous hand or gripper, via a teleoperation system poses significant challenges due to its high dimensionality, complex motions, and differences in physiological structure. In this study, we introduce a novel system for joint learning between human operators and robots, that enables human operators to share control of a robot end-effector with a learned assistive agent, facilitating simultaneous human demonstration collection and robot manipulation teaching. In this setup, as data accumulates, the assistive agent gradually learns. Consequently, less human effort and attention are required, enhancing the efficiency of the data collection process. It also allows the human operator to adjust the control ratio to achieve a trade-off between manual and automated control. We conducted experiments in both simulated environments and physical real-world settings. Through user studies and quantitative evaluations, it is evident that the proposed system could enhance data collection efficiency and reduce the need for human adaptation while ensuring the collected data is of sufficient quality for downstream tasks. Videos are available at https://norweig1an.github.io/human-agent-joint-learning.github.io/.
Abstract:Physical Human-Scene Interaction (HSI) plays a crucial role in numerous applications. However, existing HSI techniques are limited to specific object dynamics and privileged information, which prevents the development of more comprehensive applications. To address this limitation, we introduce HumanVLA for general object rearrangement directed by practical vision and language. A teacher-student framework is utilized to develop HumanVLA. A state-based teacher policy is trained first using goal-conditioned reinforcement learning and adversarial motion prior. Then, it is distilled into a vision-language-action model via behavior cloning. We propose several key insights to facilitate the large-scale learning process. To support general object rearrangement by physical humanoid, we introduce a novel Human-in-the-Room dataset encompassing various rearrangement tasks. Through extensive experiments and analysis, we demonstrate the effectiveness of the proposed approach.