Abstract:Analyses of human motion kinematics have achieved tremendous advances. However, the production mechanism, known as human dynamics, is still undercovered. In this paper, we aim to push data-driven human dynamics understanding forward. We identify a major obstacle to this as the heterogeneity of existing human motion understanding efforts. Specifically, heterogeneity exists in not only the diverse kinematics representations and hierarchical dynamics representations but also in the data from different domains, namely biomechanics and reinforcement learning. With an in-depth analysis of the existing heterogeneity, we propose to emphasize the beneath homogeneity: all of them represent the homogeneous fact of human motion, though from different perspectives. Given this, we propose Homogeneous Dynamics Space (HDyS) as a fundamental space for human dynamics by aggregating heterogeneous data and training a homogeneous latent space with inspiration from the inverse-forward dynamics procedure. Leveraging the heterogeneous representations and datasets, HDyS achieves decent mapping between human kinematics and dynamics. We demonstrate the feasibility of HDyS with extensive experiments and applications. The project page is https://foruck.github.io/HDyS.
Abstract:Inverse dynamics (ID), which aims at reproducing the driven torques from human kinematic observations, has been a critical tool for gait analysis. However, it is hindered from wider application to general motion due to its limited scalability. Conventional optimization-based ID requires expensive laboratory setups, restricting its availability. To alleviate this problem, we propose to exploit the recently progressive human motion imitation algorithms to learn human inverse dynamics in a data-driven manner. The key insight is that the human ID knowledge is implicitly possessed by motion imitators, though not directly applicable. In light of this, we devise an efficient data collection pipeline with state-of-the-art motion imitation algorithms and physics simulators, resulting in a large-scale human inverse dynamics benchmark as Imitated Dynamics (ImDy). ImDy contains over 150 hours of motion with joint torque and full-body ground reaction force data. With ImDy, we train a data-driven human inverse dynamics solver ImDyS(olver) in a fully supervised manner, which conducts ID and ground reaction force estimation simultaneously. Experiments on ImDy and real-world data demonstrate the impressive competency of ImDyS in human inverse dynamics and ground reaction force estimation. Moreover, the potential of ImDy(-S) as a fundamental motion analysis tool is exhibited with downstream applications. The project page is https://foruck.github.io/ImDy/.