Abstract:Reinforcement learning with verifiable rewards (RLVR) is effective for training large language models on deterministic outcome reasoning tasks. Prior work shows RLVR works with few prompts, but prompt selection is often based only on training-accuracy variance, leading to unstable optimization directions and weaker transfer. We revisit prompt selection from a mechanism-level view and argue that an effective minibatch should provide both (i) a reliable positive anchor and (ii) explicit negative learning signals from rare failures. Based on this principle, we propose \emph{positive--negative pairing}: at each update, we sample a hard-but-solvable $q^{+}$ and an easy-but-brittle prompt $q^{-}$(high success rate but not perfect), characterized by low and high empirical success rates under multiple rollouts. We further introduce Weighted GRPO, which reweights binary outcomes at the pair level and uses group-normalized advantages to amplify rare successes on $q^{+}$ into sharp positive guidance while turning rare failures on $q^{-}$ into strong negative penalties. This bidirectional signal provides informative learning feedback for both successes and failures, improving sample efficiency without suppressing exploration. On Qwen2.5-Math-7B, a single paired minibatch per update consistently outperforms a GRPO baseline that selects two prompts via commonly used variance-based selection heuristics: AIME~2025 Pass@8 improves from 16.8 to 22.2, and AMC23 Pass@64 from 94.0 to 97.0, while remaining competitive with large-scale RLVR trained from a pool of 1209 training prompts. Similar gains are observed on Qwen2.5-Math-7B-Instruct.
Abstract:Recently, with the rapid development of robot learning and imitation learning, numerous datasets and methods have emerged. However, these datasets and their task designs often lack systematic consideration and principles. This raises important questions: Do the current datasets and task designs truly advance the capabilities of robotic agents? Do evaluations on a few common tasks accurately reflect the differentiated performance of various methods proposed by different teams and evaluated on different tasks? To address these issues, we introduce the Great March 100 (\textbf{GM-100}) as the first step towards a robot learning Olympics. GM-100 consists of 100 carefully designed tasks that cover a wide range of interactions and long-tail behaviors, aiming to provide a diverse and challenging set of tasks to comprehensively evaluate the capabilities of robotic agents and promote diversity and complexity in robot dataset task designs. These tasks are developed through systematic analysis and expansion of existing task designs, combined with insights from human-object interaction primitives and object affordances. We collect a large amount of trajectory data on different robotic platforms and evaluate several baseline models. Experimental results demonstrate that the GM-100 tasks are 1) feasible to execute and 2) sufficiently challenging to effectively differentiate the performance of current VLA models. Our data and code are available at https://rhos.ai/research/gm-100.
Abstract:Existing depth estimation methods are fundamentally limited to predicting depth on discrete image grids. Such representations restrict their scalability to arbitrary output resolutions and hinder the geometric detail recovery. This paper introduces InfiniDepth, which represents depth as neural implicit fields. Through a simple yet effective local implicit decoder, we can query depth at continuous 2D coordinates, enabling arbitrary-resolution and fine-grained depth estimation. To better assess our method's capabilities, we curate a high-quality 4K synthetic benchmark from five different games, spanning diverse scenes with rich geometric and appearance details. Extensive experiments demonstrate that InfiniDepth achieves state-of-the-art performance on both synthetic and real-world benchmarks across relative and metric depth estimation tasks, particularly excelling in fine-detail regions. It also benefits the task of novel view synthesis under large viewpoint shifts, producing high-quality results with fewer holes and artifacts.
Abstract:The rise of 3D generative models has enabled automatic 3D geometry and texture synthesis from multimodal inputs (e.g., text or images). However, these methods often ignore physical constraints and manufacturability considerations. In this work, we address the challenge of producing 3D designs that are both lightweight and self-supporting. We present DensiCrafter, a framework for generating lightweight, self-supporting 3D hollow structures by optimizing the density field. Starting from coarse voxel grids produced by Trellis, we interpret these as continuous density fields to optimize and introduce three differentiable, physically constrained, and simulation-free loss terms. Additionally, a mass regularization penalizes unnecessary material, while a restricted optimization domain preserves the outer surface. Our method seamlessly integrates with pretrained Trellis-based models (e.g., Trellis, DSO) without any architectural changes. In extensive evaluations, we achieve up to 43% reduction in material mass on the text-to-3D task. Compared to state-of-the-art baselines, our method could improve the stability and maintain high geometric fidelity. Real-world 3D-printing experiments confirm that our hollow designs can be reliably fabricated and could be self-supporting.
Abstract:Embodied AI (EAI) research requires high-quality, diverse 3D scenes to effectively support skill acquisition, sim-to-real transfer, and generalization. Achieving these quality standards, however, necessitates the precise replication of real-world object diversity. Existing datasets demonstrate that this process heavily relies on artist-driven designs, which demand substantial human effort and present significant scalability challenges. To scalably produce realistic and interactive 3D scenes, we first present MetaScenes, a large-scale, simulatable 3D scene dataset constructed from real-world scans, which includes 15366 objects spanning 831 fine-grained categories. Then, we introduce Scan2Sim, a robust multi-modal alignment model, which enables the automated, high-quality replacement of assets, thereby eliminating the reliance on artist-driven designs for scaling 3D scenes. We further propose two benchmarks to evaluate MetaScenes: a detailed scene synthesis task focused on small item layouts for robotic manipulation and a domain transfer task in vision-and-language navigation (VLN) to validate cross-domain transfer. Results confirm MetaScene's potential to enhance EAI by supporting more generalizable agent learning and sim-to-real applications, introducing new possibilities for EAI research. Project website: https://meta-scenes.github.io/.
Abstract:Understanding 3D object shapes necessitates shape representation by object parts abstracted from results of instance and semantic segmentation. Promising shape representations enable computers to interpret a shape with meaningful parts and identify their repeatability. However, supervised shape representations depend on costly annotation efforts, while current unsupervised methods work under strong semantic priors and involve multi-stage training, thereby limiting their generalization and deployment in shape reasoning and understanding. Driven by the tendency of high-dimensional semantically similar features to lie in or near low-dimensional subspaces, we introduce a one-stage, fully unsupervised framework towards semantic-aware shape representation. This framework produces joint instance segmentation, semantic segmentation, and shape abstraction through sparse representation and feature alignment of object parts in a high-dimensional space. For sparse representation, we devise a sparse latent membership pursuit method that models each object part feature as a sparse convex combination of point features at either the semantic or instance level, promoting part features in the same subspace to exhibit similar semantics. For feature alignment, we customize an attention-based strategy in the feature space to align instance- and semantic-level object part features and reconstruct the input shape using both of them, ensuring geometric reusability and semantic consistency of object parts. To firm up semantic disambiguation, we construct cascade unfrozen learning on geometric parameters of object parts.
Abstract:Remote sensing pansharpening aims to reconstruct spatial-spectral properties during the fusion of panchromatic (PAN) images and low-resolution multi-spectral (LR-MS) images, finally generating the high-resolution multi-spectral (HR-MS) images. In the mainstream modeling strategies, i.e., CNN and Transformer, the input images are treated as the equal-sized grid of pixels in the Euclidean space. They have limitations in facing remote sensing images with irregular ground objects. Graph is the more flexible structure, however, there are two major challenges when modeling spatial-spectral properties with graph: \emph{1) constructing the customized graph structure for spatial-spectral relationship priors}; \emph{2) learning the unified spatial-spectral representation through the graph}. To address these challenges, we propose the spatial-spectral heterogeneous graph learning network, named \textbf{HetSSNet}. Specifically, HetSSNet initially constructs the heterogeneous graph structure for pansharpening, which explicitly describes pansharpening-specific relationships. Subsequently, the basic relationship pattern generation module is designed to extract the multiple relationship patterns from the heterogeneous graph. Finally, relationship pattern aggregation module is exploited to collaboratively learn unified spatial-spectral representation across different relationships among nodes with adaptive importance learning from local and global perspectives. Extensive experiments demonstrate the significant superiority and generalization of HetSSNet.
Abstract:Humans naturally rely on floor plans to navigate in unfamiliar environments, as they are readily available, reliable, and provide rich geometrical guidance. However, existing visual navigation settings overlook this valuable prior knowledge, leading to limited efficiency and accuracy. To eliminate this gap, we introduce a novel navigation task: Floor Plan Visual Navigation (FloNa), the first attempt to incorporate floor plan into embodied visual navigation. While the floor plan offers significant advantages, two key challenges emerge: (1) handling the spatial inconsistency between the floor plan and the actual scene layout for collision-free navigation, and (2) aligning observed images with the floor plan sketch despite their distinct modalities. To address these challenges, we propose FloDiff, a novel diffusion policy framework incorporating a localization module to facilitate alignment between the current observation and the floor plan. We further collect $20k$ navigation episodes across $117$ scenes in the iGibson simulator to support the training and evaluation. Extensive experiments demonstrate the effectiveness and efficiency of our framework in unfamiliar scenes using floor plan knowledge. Project website: https://gauleejx.github.io/flona/.




Abstract:Video scene detection involves assessing whether each shot and its surroundings belong to the same scene. Achieving this requires meticulously correlating multi-modal cues, $\it{e.g.}$ visual entity and place modalities, among shots and comparing semantic changes around each shot. However, most methods treat multi-modal semantics equally and do not examine contextual differences between the two sides of a shot, leading to sub-optimal detection performance. In this paper, we propose the $\bf{M}$odality-$\bf{A}$ware $\bf{S}$hot $\bf{R}$elating and $\bf{C}$omparing approach (MASRC), which enables relating shots per their own characteristics of visual entity and place modalities, as well as comparing multi-shots similarities to have scene changes explicitly encoded. Specifically, to fully harness the potential of visual entity and place modalities in modeling shot relations, we mine long-term shot correlations from entity semantics while simultaneously revealing short-term shot correlations from place semantics. In this way, we can learn distinctive shot features that consolidate coherence within scenes and amplify distinguishability across scenes. Once equipped with distinctive shot features, we further encode the relations between preceding and succeeding shots of each target shot by similarity convolution, aiding in the identification of scene ending shots. We validate the broad applicability of the proposed components in MASRC. Extensive experimental results on public benchmark datasets demonstrate that the proposed MASRC significantly advances video scene detection.




Abstract:Intelligent robots need to interact with diverse objects across various environments. The appearance and state of objects frequently undergo complex transformations depending on the object properties, e.g., phase transitions. However, in the vision community, segmenting dynamic objects with phase transitions is overlooked. In light of this, we introduce the concept of phase in segmentation, which categorizes real-world objects based on their visual characteristics and potential morphological and appearance changes. Then, we present a new benchmark, Multi-Phase, Multi-Transition, and Multi-Scenery Video Object Segmentation (M$^3$-VOS), to verify the ability of models to understand object phases, which consists of 479 high-resolution videos spanning over 10 distinct everyday scenarios. It provides dense instance mask annotations that capture both object phases and their transitions. We evaluate state-of-the-art methods on M$^3$-VOS, yielding several key insights. Notably, current appearancebased approaches show significant room for improvement when handling objects with phase transitions. The inherent changes in disorder suggest that the predictive performance of the forward entropy-increasing process can be improved through a reverse entropy-reducing process. These findings lead us to propose ReVOS, a new plug-andplay model that improves its performance by reversal refinement. Our data and code will be publicly available at https://zixuan-chen.github.io/M-cubeVOS.github.io/.