Abstract:Remote sensing pansharpening aims to reconstruct spatial-spectral properties during the fusion of panchromatic (PAN) images and low-resolution multi-spectral (LR-MS) images, finally generating the high-resolution multi-spectral (HR-MS) images. In the mainstream modeling strategies, i.e., CNN and Transformer, the input images are treated as the equal-sized grid of pixels in the Euclidean space. They have limitations in facing remote sensing images with irregular ground objects. Graph is the more flexible structure, however, there are two major challenges when modeling spatial-spectral properties with graph: \emph{1) constructing the customized graph structure for spatial-spectral relationship priors}; \emph{2) learning the unified spatial-spectral representation through the graph}. To address these challenges, we propose the spatial-spectral heterogeneous graph learning network, named \textbf{HetSSNet}. Specifically, HetSSNet initially constructs the heterogeneous graph structure for pansharpening, which explicitly describes pansharpening-specific relationships. Subsequently, the basic relationship pattern generation module is designed to extract the multiple relationship patterns from the heterogeneous graph. Finally, relationship pattern aggregation module is exploited to collaboratively learn unified spatial-spectral representation across different relationships among nodes with adaptive importance learning from local and global perspectives. Extensive experiments demonstrate the significant superiority and generalization of HetSSNet.
Abstract:Convolutional neural networks and attention mechanisms have greatly benefited remote sensing change detection (RSCD) because of their outstanding discriminative ability. Existent RSCD methods often follow a paradigm of using a non-interactive Siamese neural network for multi-temporal feature extraction and change detection heads for feature fusion and change representation. However, this paradigm lacks the contemplation of the characteristics of RSCD in temporal and spatial dimensions, and causes the drawback on spatial-temporal interaction that hinders high-quality feature extraction. To address this problem, we present STeInFormer, a spatial-temporal interaction Transformer architecture for multi-temporal feature extraction, which is the first general backbone network specifically designed for RSCD. In addition, we propose a parameter-free multi-frequency token mixer to integrate frequency-domain features that provide spectral information for RSCD. Experimental results on three datasets validate the effectiveness of the proposed method, which can outperform the state-of-the-art methods and achieve the most satisfactory efficiency-accuracy trade-off. Code is available at https://github.com/xwmaxwma/rschange.