Università di Padova, Italy, Delft University of Technology, the Netherlands and
Abstract:In the rapidly evolving landscape of cyber security, intelligent chatbots are gaining prominence. Artificial Intelligence, Machine Learning, and Natural Language Processing empower these chatbots to handle user inquiries and deliver threat intelligence. This helps cyber security knowledge readily available to both professionals and the public. Traditional rule-based chatbots often lack flexibility and struggle to adapt to user interactions. In contrast, Large Language Model-based chatbots offer contextually relevant information across multiple domains and adapt to evolving conversational contexts. In this work, we develop IntellBot, an advanced cyber security Chatbot built on top of cutting-edge technologies like Large Language Models and Langchain alongside a Retrieval-Augmented Generation model to deliver superior capabilities. This chatbot gathers information from diverse data sources to create a comprehensive knowledge base covering known vulnerabilities, recent cyber attacks, and emerging threats. It delivers tailored responses, serving as a primary hub for cyber security insights. By providing instant access to relevant information and resources, this IntellBot enhances threat intelligence, incident response, and overall security posture, saving time and empowering users with knowledge of cyber security best practices. Moreover, we analyzed the performance of our copilot using a two-stage evaluation strategy. We achieved BERT score above 0.8 by indirect approach and a cosine similarity score ranging from 0.8 to 1, which affirms the accuracy of our copilot. Additionally, we utilized RAGAS to evaluate the RAG model, and all evaluation metrics consistently produced scores above 0.77, highlighting the efficacy of our system.
Abstract:Artificial Neural Networks (ANNs), commonly mimicking neurons with non-linear functions to output floating-point numbers, consistently receive the same signals of a data point during its forward time. Unlike ANNs, Spiking Neural Networks (SNNs) get various input signals in the forward time of a data point and simulate neurons in a biologically plausible way, i.e., producing a spike (a binary value) if the accumulated membrane potential of a neuron is larger than a threshold. Even though ANNs have achieved remarkable success in multiple tasks, e.g., face recognition and object detection, SNNs have recently obtained attention due to their low power consumption, fast inference, and event-driven properties. While privacy threats against ANNs are widely explored, much less work has been done on SNNs. For instance, it is well-known that ANNs are vulnerable to the Membership Inference Attack (MIA), but whether the same applies to SNNs is not explored. In this paper, we evaluate the membership privacy of SNNs by considering eight MIAs, seven of which are inspired by MIAs against ANNs. Our evaluation results show that SNNs are more vulnerable (maximum 10% higher in terms of balanced attack accuracy) than ANNs when both are trained with neuromorphic datasets (with time dimension). On the other hand, when training ANNs or SNNs with static datasets (without time dimension), the vulnerability depends on the dataset used. If we convert ANNs trained with static datasets to SNNs, the accuracy of MIAs drops (maximum 11.5% with a reduction of 7.6% on the test accuracy of the target model). Next, we explore the impact factors of MIAs on SNNs by conducting a hyperparameter study. Finally, we show that the basic data augmentation method for static data and two recent data augmentation methods for neuromorphic data can considerably (maximum reduction of 25.7%) decrease MIAs' performance on SNNs.
Abstract:Source Inference Attack (SIA) in Federated Learning (FL) aims to identify which client used a target data point for local model training. It allows the central server to audit clients' data usage. In cross-silo FL, a client (silo) collects data from multiple subjects (e.g., individuals, writers, or devices), posing a risk of subject information leakage. Subject Membership Inference Attack (SMIA) targets this scenario and attempts to infer whether any client utilizes data points from a target subject in cross-silo FL. However, existing results on SMIA are limited and based on strong assumptions on the attack scenario. Therefore, we propose a Subject-Level Source Inference Attack (SLSIA) by removing critical constraints that only one client can use a target data point in SIA and imprecise detection of clients utilizing target subject data in SMIA. The attacker, positioned on the server side, controls a target data source and aims to detect all clients using data points from the target subject. Our strategy leverages a binary attack classifier to predict whether the embeddings returned by a local model on test data from the target subject include unique patterns that indicate a client trains the model with data from that subject. To achieve this, the attacker locally pre-trains models using data derived from the target subject and then leverages them to build a training set for the binary attack classifier. Our SLSIA significantly outperforms previous methods on three datasets. Specifically, SLSIA achieves a maximum average accuracy of 0.88 over 50 target subjects. Analyzing embedding distribution and input feature distance shows that datasets with sparse subjects are more susceptible to our attack. Finally, we propose to defend our SLSIA using item-level and subject-level differential privacy mechanisms.
Abstract:The success of learning-based coding techniques and the development of learning-based image coding standards, such as JPEG-AI, point towards the adoption of such solutions in different fields, including the storage of biometric data, like fingerprints. However, the peculiar nature of learning-based compression artifacts poses several issues concerning their impact and effectiveness on extracting biometric features and landmarks, e.g., minutiae. This problem is utterly stressed by the fact that most models are trained on natural color images, whose characteristics are very different from usual biometric images, e.g, fingerprint or iris pictures. As a matter of fact, these issues are deemed to be accurately questioned and investigated, being such analysis still largely unexplored. This study represents the first investigation about the adaptability of learning-based image codecs in the storage of fingerprint images by measuring its impact on the extraction and characterization of minutiae. Experimental results show that at a fixed rate point, learned solutions considerably outperform previous fingerprint coding standards, like JPEG2000, both in terms of distortion and minutiae preservation. Indeed, experimental results prove that the peculiarities of learned compression artifacts do not prevent automatic fingerprint identification (since minutiae types and locations are not significantly altered), nor do compromise image quality for human visual inspection (as they gain in terms of BD rate and PSNR of 47.8% and +3.97dB respectively).
Abstract:In this paper, we introduce MoRSE (Mixture of RAGs Security Experts), the first specialised AI chatbot for cybersecurity. MoRSE aims to provide comprehensive and complete knowledge about cybersecurity. MoRSE uses two RAG (Retrieval Augmented Generation) systems designed to retrieve and organize information from multidimensional cybersecurity contexts. MoRSE differs from traditional RAGs by using parallel retrievers that work together to retrieve semantically related information in different formats and structures. Unlike traditional Large Language Models (LLMs) that rely on Parametric Knowledge Bases, MoRSE retrieves relevant documents from Non-Parametric Knowledge Bases in response to user queries. Subsequently, MoRSE uses this information to generate accurate answers. In addition, MoRSE benefits from real-time updates to its knowledge bases, enabling continuous knowledge enrichment without retraining. We have evaluated the effectiveness of MoRSE against other state-of-the-art LLMs, evaluating the system on 600 cybersecurity specific questions. The experimental evaluation has shown that the improvement in terms of relevance and correctness of the answer is more than 10\% compared to known solutions such as GPT-4 and Mixtral 7x8.
Abstract:Generative models are gaining significant attention as potential catalysts for a novel industrial revolution. Since automated sample generation can be useful to solve privacy and data scarcity issues that usually affect learned biometric models, such technologies became widely spread in this field. In this paper, we assess the vulnerabilities of generative machine learning models concerning identity protection by designing and testing an identity inference attack on fingerprint datasets created by means of a generative adversarial network. Experimental results show that the proposed solution proves to be effective under different configurations and easily extendable to other biometric measurements.
Abstract:The smart grid represents a pivotal innovation in modernizing the electricity sector, offering an intelligent, digitalized energy network capable of optimizing energy delivery from source to consumer. It hence represents the backbone of the energy sector of a nation. Due to its central role, the availability of the smart grid is paramount and is hence necessary to have in-depth control of its operations and safety. To this aim, researchers developed multiple solutions to assess the smart grid's stability and guarantee that it operates in a safe state. Artificial intelligence and Machine learning algorithms have proven to be effective measures to accurately predict the smart grid's stability. Despite the presence of known adversarial attacks and potential solutions, currently, there exists no standardized measure to protect smart grids against this threat, leaving them open to new adversarial attacks. In this paper, we propose GAN-GRID a novel adversarial attack targeting the stability prediction system of a smart grid tailored to real-world constraints. Our findings reveal that an adversary armed solely with the stability model's output, devoid of data or model knowledge, can craft data classified as stable with an Attack Success Rate (ASR) of 0.99. Also by manipulating authentic data and sensor values, the attacker can amplify grid issues, potentially undetected due to a compromised stability prediction system. These results underscore the imperative of fortifying smart grid security mechanisms against adversarial manipulation to uphold system stability and reliability.
Abstract:Recent advancements in Artificial Intelligence, and particularly Large Language Models (LLMs), offer promising prospects for aiding system administrators in managing the complexity of modern networks. However, despite this potential, a significant gap exists in the literature regarding the extent to which LLMs can understand computer networks. Without empirical evidence, system administrators might rely on these models without assurance of their efficacy in performing network-related tasks accurately. In this paper, we are the first to conduct an exhaustive study on LLMs' comprehension of computer networks. We formulate several research questions to determine whether LLMs can provide correct answers when supplied with a network topology and questions on it. To assess them, we developed a thorough framework for evaluating LLMs' capabilities in various network-related tasks. We evaluate our framework on multiple computer networks employing private (e.g., GPT4) and open-source (e.g., Llama2) models. Our findings demonstrate promising results, with the best model achieving an average accuracy of 79.3%. Private LLMs achieve noteworthy results in small and medium networks, while challenges persist in comprehending complex network topologies, particularly for open-source models. Moreover, we provide insight into how prompt engineering can enhance the accuracy of some tasks.
Abstract:Predicting and classifying faults in electricity networks is crucial for uninterrupted provision and keeping maintenance costs at a minimum. Thanks to the advancements in the field provided by the smart grid, several data-driven approaches have been proposed in the literature to tackle fault prediction tasks. Implementing these systems brought several improvements, such as optimal energy consumption and quick restoration. Thus, they have become an essential component of the smart grid. However, the robustness and security of these systems against adversarial attacks have not yet been extensively investigated. These attacks can impair the whole grid and cause additional damage to the infrastructure, deceiving fault detection systems and disrupting restoration. In this paper, we present FaultGuard, the first framework for fault type and zone classification resilient to adversarial attacks. To ensure the security of our system, we employ an Anomaly Detection System (ADS) leveraging a novel Generative Adversarial Network training layer to identify attacks. Furthermore, we propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness. We comprehensively evaluate the framework's performance against various adversarial attacks using the IEEE13-AdvAttack dataset, which constitutes the state-of-the-art for resilient fault prediction benchmarking. Our model outclasses the state-of-the-art even without considering adversaries, with an accuracy of up to 0.958. Furthermore, our ADS shows attack detection capabilities with an accuracy of up to 1.000. Finally, we demonstrate how our novel training layers drastically increase performances across the whole framework, with a mean increase of 154% in ADS accuracy and 118% in model accuracy.
Abstract:Federated Learning (FL) is a machine learning (ML) approach that enables multiple decentralized devices or edge servers to collaboratively train a shared model without exchanging raw data. During the training and sharing of model updates between clients and servers, data and models are susceptible to different data-poisoning attacks. In this study, our motivation is to explore the severity of data poisoning attacks in the computer network domain because they are easy to implement but difficult to detect. We considered two types of data-poisoning attacks, label flipping (LF) and feature poisoning (FP), and applied them with a novel approach. In LF, we randomly flipped the labels of benign data and trained the model on the manipulated data. For FP, we randomly manipulated the highly contributing features determined using the Random Forest algorithm. The datasets used in this experiment were CIC and UNSW related to computer networks. We generated adversarial samples using the two attacks mentioned above, which were applied to a small percentage of datasets. Subsequently, we trained and tested the accuracy of the model on adversarial datasets. We recorded the results for both benign and manipulated datasets and observed significant differences between the accuracy of the models on different datasets. From the experimental results, it is evident that the LF attack failed, whereas the FP attack showed effective results, which proved its significance in fooling a server. With a 1% LF attack on the CIC, the accuracy was approximately 0.0428 and the ASR was 0.9564; hence, the attack is easily detectable, while with a 1% FP attack, the accuracy and ASR were both approximately 0.9600, hence, FP attacks are difficult to detect. We repeated the experiment with different poisoning percentages.