Abstract:Smart grids are critical for addressing the growing energy demand due to global population growth and urbanization. They enhance efficiency, reliability, and sustainability by integrating renewable energy. Ensuring their availability and safety requires advanced operational control and safety measures. Researchers employ AI and machine learning to assess grid stability, but challenges like the lack of datasets and cybersecurity threats, including adversarial attacks, persist. In particular, data scarcity is a key issue: obtaining grid instability instances is tough due to the need for significant expertise, resources, and time. However, they are essential to test novel research advancements and security mitigations. In this paper, we introduce a novel framework to detect instability in smart grids by employing only stable data. It relies on a Generative Adversarial Network (GAN) where the generator is trained to create instability data that are used along with stable data to train the discriminator. Moreover, we include a new adversarial training layer to improve robustness against adversarial attacks. Our solution, tested on a dataset composed of real-world stable and unstable samples, achieve accuracy up to 97.5\% in predicting grid stability and up to 98.9\% in detecting adversarial attacks. Moreover, we implemented our model in a single-board computer demonstrating efficient real-time decision-making with an average response time of less than 7ms. Our solution improves prediction accuracy and resilience while addressing data scarcity in smart grid management.
Abstract:Recent advancements in Artificial Intelligence, and particularly Large Language Models (LLMs), offer promising prospects for aiding system administrators in managing the complexity of modern networks. However, despite this potential, a significant gap exists in the literature regarding the extent to which LLMs can understand computer networks. Without empirical evidence, system administrators might rely on these models without assurance of their efficacy in performing network-related tasks accurately. In this paper, we are the first to conduct an exhaustive study on LLMs' comprehension of computer networks. We formulate several research questions to determine whether LLMs can provide correct answers when supplied with a network topology and questions on it. To assess them, we developed a thorough framework for evaluating LLMs' capabilities in various network-related tasks. We evaluate our framework on multiple computer networks employing private (e.g., GPT4) and open-source (e.g., Llama2) models. Our findings demonstrate promising results, with the best model achieving an average accuracy of 79.3%. Private LLMs achieve noteworthy results in small and medium networks, while challenges persist in comprehending complex network topologies, particularly for open-source models. Moreover, we provide insight into how prompt engineering can enhance the accuracy of some tasks.