Abstract:In this paper, we propose a generalizable deep neural network model for indoor pathloss radio map prediction (termed as IPP-Net). IPP-Net is based on a UNet architecture and learned from both large-scale ray tracing simulation data and a modified 3GPP indoor hotspot model. The performance of IPP-Net is evaluated in the First Indoor Pathloss Radio Map Prediction Challenge in ICASSP 2025. The evaluation results show that IPP-Net achieves a weighted root mean square error of 9.501 dB on three competition tasks and obtains the second overall ranking.
Abstract:Humans naturally rely on floor plans to navigate in unfamiliar environments, as they are readily available, reliable, and provide rich geometrical guidance. However, existing visual navigation settings overlook this valuable prior knowledge, leading to limited efficiency and accuracy. To eliminate this gap, we introduce a novel navigation task: Floor Plan Visual Navigation (FloNa), the first attempt to incorporate floor plan into embodied visual navigation. While the floor plan offers significant advantages, two key challenges emerge: (1) handling the spatial inconsistency between the floor plan and the actual scene layout for collision-free navigation, and (2) aligning observed images with the floor plan sketch despite their distinct modalities. To address these challenges, we propose FloDiff, a novel diffusion policy framework incorporating a localization module to facilitate alignment between the current observation and the floor plan. We further collect $20k$ navigation episodes across $117$ scenes in the iGibson simulator to support the training and evaluation. Extensive experiments demonstrate the effectiveness and efficiency of our framework in unfamiliar scenes using floor plan knowledge. Project website: https://gauleejx.github.io/flona/.
Abstract:This paper investigates a transmission scheme for enhancing quantum communication security, aimed at improving the security of space-air-ground integrated networks (SAGIN). Quantum teleportation achieves the transmission of quantum states through quantum channels. In simple terms, an unknown quantum state at one location can be reconstructed on a particle at another location. By combining classical Turbo coding with quantum Shor error-correcting codes, we propose a practical solution that ensures secure information transmission even in the presence of errors in both classical and quantum channels. To provide absolute security under SAGIN, we add a quantum secure direct communication (QSDC) protocol to the current system. Specifically, by accounting for the practical scenario of eavesdropping in quantum channels, the QSDC protocol utilizes virtual entangled pairs to detect the presence of eavesdroppers. Consequently, the overall scheme guarantees both the reliability and absolute security of communication.
Abstract:Ensuring thermal comfort is essential for the well-being and productivity of individuals in built environments. Of the various thermal comfort indicators, the mean radiant temperature (MRT) is very challenging to measure. Most common measurement methodologies are time-consuming and not user-friendly. To address this issue, this paper proposes a novel MRT measurement framework that uses visual simultaneous localization and mapping (SLAM) and semantic segmentation techniques. The proposed approach follows the rule of thumb of the traditional MRT calculation method using surface temperature and view factors. However, it employs visual SLAM and creates a 3D thermal point cloud with enriched surface temperature information. The framework then implements Grounded SAM, a new object detection and segmentation tool to extract features with distinct temperature profiles on building surfaces. The detailed segmentation of thermal features not only reduces potential errors in the calculation of the MRT but also provides an efficient reconstruction of the spatial MRT distribution in the indoor environment. We also validate the calculation results with the reference measurement methodology. This data-driven framework offers faster and more efficient MRT measurements and spatial mapping than conventional methods. It can enable the direct engagement of researchers and practitioners in MRT measurements and contribute to research on thermal comfort and radiant cooling and heating systems.
Abstract:We introduce Diffusion-based Audio Captioning (DAC), a non-autoregressive diffusion model tailored for diverse and efficient audio captioning. Although existing captioning models relying on language backbones have achieved remarkable success in various captioning tasks, their insufficient performance in terms of generation speed and diversity impede progress in audio understanding and multimedia applications. Our diffusion-based framework offers unique advantages stemming from its inherent stochasticity and holistic context modeling in captioning. Through rigorous evaluation, we demonstrate that DAC not only achieves SOTA performance levels compared to existing benchmarks in the caption quality, but also significantly outperforms them in terms of generation speed and diversity. The success of DAC illustrates that text generation can also be seamlessly integrated with audio and visual generation tasks using a diffusion backbone, paving the way for a unified, audio-related generative model across different modalities.
Abstract:Visual and auditory perception are two crucial ways humans experience the world. Text-to-video generation has made remarkable progress over the past year, but the absence of harmonious audio in generated video limits its broader applications. In this paper, we propose Semantic and Temporal Aligned Video-to-Audio (STA-V2A), an approach that enhances audio generation from videos by extracting both local temporal and global semantic video features and combining these refined video features with text as cross-modal guidance. To address the issue of information redundancy in videos, we propose an onset prediction pretext task for local temporal feature extraction and an attentive pooling module for global semantic feature extraction. To supplement the insufficient semantic information in videos, we propose a Latent Diffusion Model with Text-to-Audio priors initialization and cross-modal guidance. We also introduce Audio-Audio Align, a new metric to assess audio-temporal alignment. Subjective and objective metrics demonstrate that our method surpasses existing Video-to-Audio models in generating audio with better quality, semantic consistency, and temporal alignment. The ablation experiment validated the effectiveness of each module. Audio samples are available at https://y-ren16.github.io/STAV2A.
Abstract:We propose Reasoning to Ground (R2G), a neural symbolic model that grounds the target objects within 3D scenes in a reasoning manner. In contrast to prior works, R2G explicitly models the 3D scene with a semantic concept-based scene graph; recurrently simulates the attention transferring across object entities; thus makes the process of grounding the target objects with the highest probability interpretable. Specifically, we respectively embed multiple object properties within the graph nodes and spatial relations among entities within the edges, utilizing a predefined semantic vocabulary. To guide attention transferring, we employ learning or prompting-based methods to analyze the referential utterance and convert it into reasoning instructions within the same semantic space. In each reasoning round, R2G either (1) merges current attention distribution with the similarity between the instruction and embedded entity properties or (2) shifts the attention across the scene graph based on the similarity between the instruction and embedded spatial relations. The experiments on Sr3D/Nr3D benchmarks show that R2G achieves a comparable result with the prior works while maintaining improved interpretability, breaking a new path for 3D language grounding.
Abstract:Generating semantically and temporally aligned audio content in accordance with video input has become a focal point for researchers, particularly following the remarkable breakthrough in text-to-video generation. In this work, we aim to offer insights into the video-to-audio generation paradigm, focusing on three crucial aspects: vision encoders, auxiliary embeddings, and data augmentation techniques. Beginning with a foundational model VTA-LDM built on a simple yet surprisingly effective intuition, we explore various vision encoders and auxiliary embeddings through ablation studies. Employing a comprehensive evaluation pipeline that emphasizes generation quality and video-audio synchronization alignment, we demonstrate that our model exhibits state-of-the-art video-to-audio generation capabilities. Furthermore, we provide critical insights into the impact of different data augmentation methods on enhancing the generation framework's overall capacity. We showcase possibilities to advance the challenge of generating synchronized audio from semantic and temporal perspectives. We hope these insights will serve as a stepping stone toward developing more realistic and accurate audio-visual generation models.
Abstract:Despite significant advancements in text-to-motion synthesis, generating language-guided human motion within 3D environments poses substantial challenges. These challenges stem primarily from (i) the absence of powerful generative models capable of jointly modeling natural language, 3D scenes, and human motion, and (ii) the generative models' intensive data requirements contrasted with the scarcity of comprehensive, high-quality, language-scene-motion datasets. To tackle these issues, we introduce a novel two-stage framework that employs scene affordance as an intermediate representation, effectively linking 3D scene grounding and conditional motion generation. Our framework comprises an Affordance Diffusion Model (ADM) for predicting explicit affordance map and an Affordance-to-Motion Diffusion Model (AMDM) for generating plausible human motions. By leveraging scene affordance maps, our method overcomes the difficulty in generating human motion under multimodal condition signals, especially when training with limited data lacking extensive language-scene-motion pairs. Our extensive experiments demonstrate that our approach consistently outperforms all baselines on established benchmarks, including HumanML3D and HUMANISE. Additionally, we validate our model's exceptional generalization capabilities on a specially curated evaluation set featuring previously unseen descriptions and scenes.
Abstract:Storytelling aims to generate reasonable and vivid narratives based on an ordered image stream. The fidelity to the image story theme and the divergence of story plots attract readers to keep reading. Previous works iteratively improved the alignment of multiple modalities but ultimately resulted in the generation of simplistic storylines for image streams. In this work, we propose a new pipeline, termed LLaMS, to generate multimodal human-level stories that are embodied in expressiveness and consistency. Specifically, by fully exploiting the commonsense knowledge within the LLM, we first employ a sequence data auto-enhancement strategy to enhance factual content expression and leverage a textual reasoning architecture for expressive story generation and prediction. Secondly, we propose SQ-Adatpter module for story illustration generation which can maintain sequence consistency. Numerical results are conducted through human evaluation to verify the superiority of proposed LLaMS. Evaluations show that LLaMS achieves state-of-the-art storytelling performance and 86% correlation and 100% consistency win rate as compared with previous SOTA methods. Furthermore, ablation experiments are conducted to verify the effectiveness of proposed sequence data enhancement and SQ-Adapter.