Abstract:We introduce SRC-gAudio, a novel audio generation model designed to facilitate text-to-audio generation across a wide range of sampling rates within a single model architecture. SRC-gAudio incorporates the sampling rate as part of the generation condition to guide the diffusion-based audio generation process. Our model enables the generation of audio at multiple sampling rates with a single unified model. Furthermore, we explore the potential benefits of large-scale, low-sampling-rate data in enhancing the generation quality of high-sampling-rate audio. Through extensive experiments, we demonstrate that SRC-gAudio effectively generates audio under controlled sampling rates. Additionally, our results indicate that pre-training on low-sampling-rate data can lead to significant improvements in audio quality across various metrics.
Abstract:We introduce Diffusion-based Audio Captioning (DAC), a non-autoregressive diffusion model tailored for diverse and efficient audio captioning. Although existing captioning models relying on language backbones have achieved remarkable success in various captioning tasks, their insufficient performance in terms of generation speed and diversity impede progress in audio understanding and multimedia applications. Our diffusion-based framework offers unique advantages stemming from its inherent stochasticity and holistic context modeling in captioning. Through rigorous evaluation, we demonstrate that DAC not only achieves SOTA performance levels compared to existing benchmarks in the caption quality, but also significantly outperforms them in terms of generation speed and diversity. The success of DAC illustrates that text generation can also be seamlessly integrated with audio and visual generation tasks using a diffusion backbone, paving the way for a unified, audio-related generative model across different modalities.
Abstract:Visual and auditory perception are two crucial ways humans experience the world. Text-to-video generation has made remarkable progress over the past year, but the absence of harmonious audio in generated video limits its broader applications. In this paper, we propose Semantic and Temporal Aligned Video-to-Audio (STA-V2A), an approach that enhances audio generation from videos by extracting both local temporal and global semantic video features and combining these refined video features with text as cross-modal guidance. To address the issue of information redundancy in videos, we propose an onset prediction pretext task for local temporal feature extraction and an attentive pooling module for global semantic feature extraction. To supplement the insufficient semantic information in videos, we propose a Latent Diffusion Model with Text-to-Audio priors initialization and cross-modal guidance. We also introduce Audio-Audio Align, a new metric to assess audio-temporal alignment. Subjective and objective metrics demonstrate that our method surpasses existing Video-to-Audio models in generating audio with better quality, semantic consistency, and temporal alignment. The ablation experiment validated the effectiveness of each module. Audio samples are available at https://y-ren16.github.io/STAV2A.
Abstract:Generating semantically and temporally aligned audio content in accordance with video input has become a focal point for researchers, particularly following the remarkable breakthrough in text-to-video generation. In this work, we aim to offer insights into the video-to-audio generation paradigm, focusing on three crucial aspects: vision encoders, auxiliary embeddings, and data augmentation techniques. Beginning with a foundational model VTA-LDM built on a simple yet surprisingly effective intuition, we explore various vision encoders and auxiliary embeddings through ablation studies. Employing a comprehensive evaluation pipeline that emphasizes generation quality and video-audio synchronization alignment, we demonstrate that our model exhibits state-of-the-art video-to-audio generation capabilities. Furthermore, we provide critical insights into the impact of different data augmentation methods on enhancing the generation framework's overall capacity. We showcase possibilities to advance the challenge of generating synchronized audio from semantic and temporal perspectives. We hope these insights will serve as a stepping stone toward developing more realistic and accurate audio-visual generation models.
Abstract:Recent advances in vision-language learning have achieved notable success on complete-information question-answering datasets through the integration of extensive world knowledge. Yet, most models operate passively, responding to questions based on pre-stored knowledge. In stark contrast, humans possess the ability to actively explore, accumulate, and reason using both newfound and existing information to tackle incomplete-information questions. In response to this gap, we introduce $Conan$, an interactive open-world environment devised for the assessment of active reasoning. $Conan$ facilitates active exploration and promotes multi-round abductive inference, reminiscent of rich, open-world settings like Minecraft. Diverging from previous works that lean primarily on single-round deduction via instruction following, $Conan$ compels agents to actively interact with their surroundings, amalgamating new evidence with prior knowledge to elucidate events from incomplete observations. Our analysis on $Conan$ underscores the shortcomings of contemporary state-of-the-art models in active exploration and understanding complex scenarios. Additionally, we explore Abduction from Deduction, where agents harness Bayesian rules to recast the challenge of abduction as a deductive process. Through $Conan$, we aim to galvanize advancements in active reasoning and set the stage for the next generation of artificial intelligence agents adept at dynamically engaging in environments.
Abstract:Without explicit feedback, humans can rapidly learn the meaning of words. Children can acquire a new word after just a few passive exposures, a process known as fast mapping. This word learning capability is believed to be the most fundamental building block of multimodal understanding and reasoning. Despite recent advancements in multimodal learning, a systematic and rigorous evaluation is still missing for human-like word learning in machines. To fill in this gap, we introduce the MachinE Word Learning (MEWL) benchmark to assess how machines learn word meaning in grounded visual scenes. MEWL covers human's core cognitive toolkits in word learning: cross-situational reasoning, bootstrapping, and pragmatic learning. Specifically, MEWL is a few-shot benchmark suite consisting of nine tasks for probing various word learning capabilities. These tasks are carefully designed to be aligned with the children's core abilities in word learning and echo the theories in the developmental literature. By evaluating multimodal and unimodal agents' performance with a comparative analysis of human performance, we notice a sharp divergence in human and machine word learning. We further discuss these differences between humans and machines and call for human-like few-shot word learning in machines.
Abstract:If scientific discovery is one of the main driving forces of human progress, insight is the fuel for the engine, which has long attracted behavior-level research to understand and model its underlying cognitive process. However, current tasks that abstract scientific discovery mostly focus on the emergence of insight, ignoring the special role played by domain knowledge. In this concept paper, we view scientific discovery as an interplay between $thinking \ out \ of \ the \ box$ that actively seeks insightful solutions and $thinking \ inside \ the \ box$ that generalizes on conceptual domain knowledge to keep correct. Accordingly, we propose Mindle, a semantic searching game that triggers scientific-discovery-like thinking spontaneously, as infrastructure for exploring scientific discovery on a large scale. On this basis, the meta-strategies for insights and the usage of concepts can be investigated reciprocally. In the pilot studies, several interesting observations inspire elaborated hypotheses on meta-strategies, context, and individual diversity for further investigations.
Abstract:We consider concept generalization at a large scale in the diverse and natural visual spectrum. Established computational modes (i.e., rule-based or similarity-based) are primarily studied isolated and focus on confined and abstract problem spaces. In this work, we study these two modes when the problem space scales up, and the $complexity$ of concepts becomes diverse. Specifically, at the $representational \ level$, we seek to answer how the complexity varies when a visual concept is mapped to the representation space. Prior psychology literature has shown that two types of complexities (i.e., subjective complexity and visual complexity) (Griffiths and Tenenbaum, 2003) build an inverted-U relation (Donderi, 2006; Sun and Firestone, 2021). Leveraging Representativeness of Attribute (RoA), we computationally confirm the following observation: Models use attributes with high RoA to describe visual concepts, and the description length falls in an inverted-U relation with the increment in visual complexity. At the $computational \ level$, we aim to answer how the complexity of representation affects the shift between the rule- and similarity-based generalization. We hypothesize that category-conditioned visual modeling estimates the co-occurrence frequency between visual and categorical attributes, thus potentially serving as the prior for the natural visual world. Experimental results show that representations with relatively high subjective complexity outperform those with relatively low subjective complexity in the rule-based generalization, while the trend is the opposite in the similarity-based generalization.
Abstract:Theoretical ideas and empirical research have shown us a seemingly surprising result: children, even very young toddlers, demonstrate learning and thinking in a strikingly similar manner to scientific reasoning in formal research. Encountering a novel phenomenon, children make hypotheses against data, conduct causal inference from observation, test their theory via experimentation, and correct the proposition if inconsistency arises. Rounds of such processes continue until the underlying mechanism is found. Towards building machines that can learn and think like people, one natural question for us to ask is: whether the intelligence we achieve today manages to perform such a scientific thinking process, and if any, at what level. In this work, we devise the EST environment for evaluating the scientific thinking ability in artificial agents. Motivated by the stream of research on causal discovery, we build our interactive EST environment based on Blicket detection. Specifically, in each episode of EST, an agent is presented with novel observations and asked to figure out all objects' Blicketness. At each time step, the agent proposes new experiments to validate its hypothesis and updates its current belief. By evaluating Reinforcement Learning (RL) agents on both a symbolic and visual version of this task, we notice clear failure of today's learning methods in reaching a level of intelligence comparable to humans. Such inefficacy of learning in scientific thinking calls for future research in building humanlike intelligence.