Abstract:Ensuring thermal comfort is essential for the well-being and productivity of individuals in built environments. Of the various thermal comfort indicators, the mean radiant temperature (MRT) is very challenging to measure. Most common measurement methodologies are time-consuming and not user-friendly. To address this issue, this paper proposes a novel MRT measurement framework that uses visual simultaneous localization and mapping (SLAM) and semantic segmentation techniques. The proposed approach follows the rule of thumb of the traditional MRT calculation method using surface temperature and view factors. However, it employs visual SLAM and creates a 3D thermal point cloud with enriched surface temperature information. The framework then implements Grounded SAM, a new object detection and segmentation tool to extract features with distinct temperature profiles on building surfaces. The detailed segmentation of thermal features not only reduces potential errors in the calculation of the MRT but also provides an efficient reconstruction of the spatial MRT distribution in the indoor environment. We also validate the calculation results with the reference measurement methodology. This data-driven framework offers faster and more efficient MRT measurements and spatial mapping than conventional methods. It can enable the direct engagement of researchers and practitioners in MRT measurements and contribute to research on thermal comfort and radiant cooling and heating systems.