Abstract:Multimodal Large Language Models (MLLMs) have garnered significant attention recently and demonstrate outstanding capabilities in various tasks such as OCR, VQA, captioning, $\textit{etc}$. However, hallucination remains a persistent issue. While numerous methods have been proposed to mitigate hallucinations, achieving notable improvements, these methods primarily focus on mitigating hallucinations about $\textbf{object/noun-related}$ concepts. Verb concepts, crucial for understanding human actions, have been largely overlooked. In this paper, to the best of our knowledge, we are the $\textbf{first}$ to investigate the $\textbf{verb hallucination}$ phenomenon of MLLMs from various perspectives. Our findings reveal that most state-of-the-art MLLMs suffer from severe verb hallucination. To assess the effectiveness of existing mitigation methods for object concept hallucination on verb hallucination, we evaluated these methods and found that they do not effectively address verb hallucination. To address this issue, we propose a novel rich verb knowledge-based tuning method to mitigate verb hallucination. The experiment results demonstrate that our method significantly reduces hallucinations related to verbs. $\textit{Our code and data will be made publicly available}$.
Abstract:Existing deep learning approaches for travel mode choice modeling fail to inform modelers about their prediction uncertainty. Even when facing scenarios that are out of the distribution of training data, which implies high prediction uncertainty, these approaches still provide deterministic answers, potentially leading to misguidance. To address this limitation, this study introduces the concept of uncertainty from the field of explainable artificial intelligence into travel mode choice modeling. We propose a Bayesian neural network-based travel mode prediction model (BTMP) that quantifies the uncertainty of travel mode predictions, enabling the model itself to "know" and "tell" what it doesn't know. With BTMP, we further propose an uncertainty-guided active survey framework, which dynamically formulates survey questions representing travel mode choice scenarios with high prediction uncertainty. Through iterative collection of responses to these dynamically tailored survey questions, BTMP is iteratively trained to achieve the desired accuracy faster with fewer questions, thereby reducing survey costs. Experimental validation using synthetic datasets confirms the effectiveness of BTMP in quantifying prediction uncertainty. Furthermore, experiments, utilizing both synthetic and real-world data, demonstrate that the BTMP model, trained with the uncertainty-guided active survey framework, requires 20% to 50% fewer survey responses to match the performance of the model trained on randomly collected survey data. Overall, the proposed BTMP model and active survey framework innovatively incorporate uncertainty quantification into travel mode choice modeling, providing model users with essential insights into prediction reliability while optimizing data collection for deep learning model training in a cost-efficient manner.
Abstract:Reinforcement Learning (RL) is a widely employed technique in decision-making problems, encompassing two fundamental operations -- policy evaluation and policy improvement. Enhancing learning efficiency remains a key challenge in RL, with many efforts focused on using ensemble critics to boost policy evaluation efficiency. However, when using multiple critics, the actor in the policy improvement process can obtain different gradients. Previous studies have combined these gradients without considering their disagreements. Therefore, optimizing the policy improvement process is crucial to enhance learning efficiency. This study focuses on investigating the impact of gradient disagreements caused by ensemble critics on policy improvement. We introduce the concept of uncertainty of gradient directions as a means to measure the disagreement among gradients utilized in the policy improvement process. Through measuring the disagreement among gradients, we find that transitions with lower uncertainty of gradient directions are more reliable in the policy improvement process. Building on this analysis, we propose a method called von Mises-Fisher Experience Resampling (vMFER), which optimizes the policy improvement process by resampling transitions and assigning higher confidence to transitions with lower uncertainty of gradient directions. Our experiments demonstrate that vMFER significantly outperforms the benchmark and is particularly well-suited for ensemble structures in RL.
Abstract:Pose estimation is a crucial task in computer vision, enabling tracking and manipulating objects in images or videos. While several datasets exist for pose estimation, there is a lack of large-scale datasets specifically focusing on cluttered scenes with occlusions. This limitation is a bottleneck in the development and evaluation of pose estimation methods, particularly toward the goal of real-world application in environments where occlusions are common. Addressing this, we introduce PACE (Pose Annotations in Cluttered Environments), a large-scale benchmark designed to advance the development and evaluation of pose estimation methods in cluttered scenarios. PACE encompasses 54,945 frames with 257,673 annotations across 300 videos, covering 576 objects from 44 categories and featuring a mix of rigid and articulated items in cluttered scenes. To annotate the real-world data efficiently, we developed an innovative annotation system utilizing a calibrated 3-camera setup. We test state-of-the-art algorithms in PACE along two tracks: pose estimation, and object pose tracking, revealing the benchmark's challenges and research opportunities. We plan to release PACE as a public evaluation benchmark, along the annotations tools we developed, to stimulate further advancements in the field. Our code and data is available on https://github.com/qq456cvb/PACE.
Abstract:Embedding Human and Articulated Object Interaction (HAOI) in 3D is an important direction for a deeper human activity understanding. Different from previous works that use parametric and CAD models to represent humans and objects, in this work, we propose a novel 3D geometric primitive-based language to encode both humans and objects. Given our new paradigm, humans and objects are all compositions of primitives instead of heterogeneous entities. Thus, mutual information learning may be achieved between the limited 3D data of humans and different object categories. Moreover, considering the simplicity of the expression and the richness of the information it contains, we choose the superquadric as the primitive representation. To explore an effective embedding of HAOI for the machine, we build a new benchmark on 3D HAOI consisting of primitives together with their images and propose a task requiring machines to recover 3D HAOI using primitives from images. Moreover, we propose a baseline of single-view 3D reconstruction on HAOI. We believe this primitive-based 3D HAOI representation would pave the way for 3D HAOI studies. Our code and data are available at https://mvig-rhos.com/p3haoi.
Abstract:Stochastic filtering is a vibrant area of research in both control theory and statistics, with broad applications in many scientific fields. Despite its extensive historical development, there still lacks an effective method for joint parameter-state estimation in SDEs. The state-of-the-art particle filtering methods suffer from either sample degeneracy or information loss, with both issues stemming from the dynamics of the particles generated to represent system parameters. This paper provides a novel and effective approach for joint parameter-state estimation in SDEs via Rao-Blackwellization and modularization. Our method operates in two layers: the first layer estimates the system states using a bootstrap particle filter, and the second layer marginalizes out system parameters explicitly. This strategy circumvents the need to generate particles representing system parameters, thereby mitigating their associated problems of sample degeneracy and information loss. Moreover, our method employs a modularization approach when integrating out the parameters, which significantly reduces the computational complexity. All these designs ensure the superior performance of our method. Finally, a numerical example is presented to illustrate that our method outperforms existing approaches by a large margin.
Abstract:Fine-grained entity typing (FET) aims to deduce specific semantic types of the entity mentions in text. Modern methods for FET mainly focus on learning what a certain type looks like. And few works directly model the type differences, that is, let models know the extent that one type is different from others. To alleviate this problem, we propose a type-enriched hierarchical contrastive strategy for FET. Our method can directly model the differences between hierarchical types and improve the ability to distinguish multi-grained similar types. On the one hand, we embed type into entity contexts to make type information directly perceptible. On the other hand, we design a constrained contrastive strategy on the hierarchical structure to directly model the type differences, which can simultaneously perceive the distinguishability between types at different granularity. Experimental results on three benchmarks, BBN, OntoNotes, and FIGER show that our method achieves significant performance on FET by effectively modeling type differences.
Abstract:The Intelligent decision of the unmanned combat aerial vehicle (UCAV) has long been a challenging problem. The conventional search method can hardly satisfy the real-time demand during high dynamics air combat scenarios. The reinforcement learning (RL) method can significantly shorten the decision time via using neural networks. However, the sparse reward problem limits its convergence speed and the artificial prior experience reward can easily deviate its optimal convergent direction of the original task, which raises great difficulties for the RL air combat application. In this paper, we propose a homotopy-based soft actor-critic method (HSAC) which focuses on addressing these problems via following the homotopy path between the original task with sparse reward and the auxiliary task with artificial prior experience reward. The convergence and the feasibility of this method are also proved in this paper. To confirm our method feasibly, we construct a detailed 3D air combat simulation environment for the RL-based methods training firstly, and we implement our method in both the attack horizontal flight UCAV task and the self-play confrontation task. Experimental results show that our method performs better than the methods only utilizing the sparse reward or the artificial prior experience reward. The agent trained by our method can reach more than 98.3% win rate in the attack horizontal flight UCAV task and average 67.4% win rate when confronted with the agents trained by the other two methods.
Abstract:This paper presents a commentator for providing real-time game commentary in a fighting game. The commentary takes into account highlight cues, obtained by analyzing scenes during gameplay, as input to adjust the pitch and loudness of commentary to be spoken by using a Text-to-Speech (TTS) technology. We investigate different designs for pitch and loudness adjustment. The proposed AI consists of two parts: a dynamic adjuster for controlling pitch and loudness of the TTS and a real-time game commentary generator. We conduct a pilot study on a fighting game, and our result shows that by adjusting the loudness significantly according to the level of game highlight, the entertainment of the gameplay can be enhanced.
Abstract:Deep learning applications in shaping ad hoc planning proposals are limited by the difficulty in integrating professional knowledge about cities with artificial intelligence. We propose a novel, complementary use of deep neural networks and planning guidance to automate street network generation that can be context-aware, example-based and user-guided. The model tests suggest that the incorporation of planning knowledge (e.g., road junctions and neighborhood types) in the model training leads to a more realistic prediction of street configurations. Furthermore, the new tool provides both professional and lay users an opportunity to systematically and intuitively explore benchmark proposals for comparisons and further evaluations.