Abstract:With the rapid development of e-commerce, e-commerce platforms are facing an increasing number of fraud threats. Effectively identifying and preventing these fraudulent activities has become a critical research problem. Traditional fraud detection methods typically rely on supervised learning, which requires large amounts of labeled data. However, such data is often difficult to obtain, and the continuous evolution of fraudulent activities further reduces the adaptability and effectiveness of traditional methods. To address this issue, this study proposes an unsupervised e-commerce fraud detection algorithm based on SimCLR. The algorithm leverages the contrastive learning framework to effectively detect fraud by learning the underlying representations of transaction data in an unlabeled setting. Experimental results on the eBay platform dataset show that the proposed algorithm outperforms traditional unsupervised methods such as K-means, Isolation Forest, and Autoencoders in terms of accuracy, precision, recall, and F1 score, demonstrating strong fraud detection capabilities. The results confirm that the SimCLR-based unsupervised fraud detection method has broad application prospects in e-commerce platform security, improving both detection accuracy and robustness. In the future, with the increasing scale and diversity of datasets, the model's performance will continue to improve, and it could be integrated with real-time monitoring systems to provide more efficient security for e-commerce platforms.
Abstract:This study presents a hierarchical mining framework for high-dimensional imbalanced data, leveraging a depth graph model to address the inherent performance limitations of conventional approaches in handling complex, high-dimensional data distributions with imbalanced sample representations. By constructing a structured graph representation of the dataset and integrating graph neural network (GNN) embeddings, the proposed method effectively captures global interdependencies among samples. Furthermore, a hierarchical strategy is employed to enhance the characterization and extraction of minority class feature patterns, thereby facilitating precise and robust imbalanced data mining. Empirical evaluations across multiple experimental scenarios validate the efficacy of the proposed approach, demonstrating substantial improvements over traditional methods in key performance metrics, including pattern discovery count, average support, and minority class coverage. Notably, the method exhibits superior capabilities in minority-class feature extraction and pattern correlation analysis. These findings underscore the potential of depth graph models, in conjunction with hierarchical mining strategies, to significantly enhance the efficiency and accuracy of imbalanced data analysis. This research contributes a novel computational framework for high-dimensional complex data processing and lays the foundation for future extensions to dynamically evolving imbalanced data and multi-modal data applications, thereby expanding the applicability of advanced data mining methodologies to more intricate analytical domains.