Abstract:This study proposes a credit card fraud detection method based on Heterogeneous Graph Neural Network (HGNN) to address fraud in complex transaction networks. Unlike traditional machine learning methods that rely solely on numerical features of transaction records, this approach constructs heterogeneous transaction graphs. These graphs incorporate multiple node types, including users, merchants, and transactions. By leveraging graph neural networks, the model captures higher-order transaction relationships. A Graph Attention Mechanism is employed to dynamically assign weights to different transaction relationships. Additionally, a Temporal Decay Mechanism is integrated to enhance the model's sensitivity to time-related fraud patterns. To address the scarcity of fraudulent transaction samples, this study applies SMOTE oversampling and Cost-sensitive Learning. These techniques strengthen the model's ability to identify fraudulent transactions. Experimental results demonstrate that the proposed method outperforms existing GNN models, including GCN, GAT, and GraphSAGE, on the IEEE-CIS Fraud Detection dataset. The model achieves notable improvements in both accuracy and OC-ROC. Future research may explore the integration of dynamic graph neural networks and reinforcement learning. Such advancements could enhance the real-time adaptability of fraud detection systems and provide more intelligent solutions for financial risk control.
Abstract:With the rapid development of e-commerce, e-commerce platforms are facing an increasing number of fraud threats. Effectively identifying and preventing these fraudulent activities has become a critical research problem. Traditional fraud detection methods typically rely on supervised learning, which requires large amounts of labeled data. However, such data is often difficult to obtain, and the continuous evolution of fraudulent activities further reduces the adaptability and effectiveness of traditional methods. To address this issue, this study proposes an unsupervised e-commerce fraud detection algorithm based on SimCLR. The algorithm leverages the contrastive learning framework to effectively detect fraud by learning the underlying representations of transaction data in an unlabeled setting. Experimental results on the eBay platform dataset show that the proposed algorithm outperforms traditional unsupervised methods such as K-means, Isolation Forest, and Autoencoders in terms of accuracy, precision, recall, and F1 score, demonstrating strong fraud detection capabilities. The results confirm that the SimCLR-based unsupervised fraud detection method has broad application prospects in e-commerce platform security, improving both detection accuracy and robustness. In the future, with the increasing scale and diversity of datasets, the model's performance will continue to improve, and it could be integrated with real-time monitoring systems to provide more efficient security for e-commerce platforms.