Abstract:This study aims to develop an efficient and accurate model for detecting malicious comments, addressing the increasingly severe issue of false and harmful content on social media platforms. We propose a deep learning model that combines BERT and BiLSTM. The BERT model, through pre-training, captures deep semantic features of text, while the BiLSTM network excels at processing sequential data and can further model the contextual dependencies of text. Experimental results on the Jigsaw Unintended Bias in Toxicity Classification dataset demonstrate that the BERT+BiLSTM model achieves superior performance in malicious comment detection tasks, with a precision of 0.94, recall of 0.93, and accuracy of 0.94. This surpasses other models, including standalone BERT, TextCNN, TextRNN, and traditional machine learning algorithms using TF-IDF features. These results confirm the superiority of the BERT+BiLSTM model in handling imbalanced data and capturing deep semantic features of malicious comments, providing an effective technical means for social media content moderation and online environment purification.
Abstract:This paper proposes a medical text summarization method based on LongFormer, aimed at addressing the challenges faced by existing models when processing long medical texts. Traditional summarization methods are often limited by short-term memory, leading to information loss or reduced summary quality in long texts. LongFormer, by introducing long-range self-attention, effectively captures long-range dependencies in the text, retaining more key information and improving the accuracy and information retention of summaries. Experimental results show that the LongFormer-based model outperforms traditional models, such as RNN, T5, and BERT in automatic evaluation metrics like ROUGE. It also receives high scores in expert evaluations, particularly excelling in information retention and grammatical accuracy. However, there is still room for improvement in terms of conciseness and readability. Some experts noted that the generated summaries contain redundant information, which affects conciseness. Future research will focus on further optimizing the model structure to enhance conciseness and fluency, achieving more efficient medical text summarization. As medical data continues to grow, automated summarization technology will play an increasingly important role in fields such as medical research, clinical decision support, and knowledge management.