Abstract:In recent years, imitation learning has made progress in the field of robotic manipulation. However, it still faces challenges when dealing with complex long-horizon deformable object tasks, such as high-dimensional state spaces, complex dynamics, and multimodal action distributions. Traditional imitation learning methods often require a large amount of data and encounter distributional shifts and accumulative errors in these tasks. To address these issues, we propose a data-efficient general learning framework (DeformPAM) based on preference learning and reward-guided action selection. DeformPAM decomposes long-horizon tasks into multiple action primitives, utilizes 3D point cloud inputs and diffusion models to model action distributions, and trains an implicit reward model using human preference data. During the inference phase, the reward model scores multiple candidate actions, selecting the optimal action for execution, thereby reducing the occurrence of anomalous actions and improving task completion quality. Experiments conducted on three challenging real-world long-horizon deformable object manipulation tasks demonstrate the effectiveness of this method. Results show that DeformPAM improves both task completion quality and efficiency compared to baseline methods even with limited data. Code and data will be available at https://deform-pam.robotflow.ai.
Abstract:While previous audio-driven talking head generation (THG) methods generate head poses from driving audio, the generated poses or lips cannot match the audio well or are not editable. In this study, we propose \textbf{PoseTalk}, a THG system that can freely generate lip-synchronized talking head videos with free head poses conditioned on text prompts and audio. The core insight of our method is using head pose to connect visual, linguistic, and audio signals. First, we propose to generate poses from both audio and text prompts, where the audio offers short-term variations and rhythm correspondence of the head movements and the text prompts describe the long-term semantics of head motions. To achieve this goal, we devise a Pose Latent Diffusion (PLD) model to generate motion latent from text prompts and audio cues in a pose latent space. Second, we observe a loss-imbalance problem: the loss for the lip region contributes less than 4\% of the total reconstruction loss caused by both pose and lip, making optimization lean towards head movements rather than lip shapes. To address this issue, we propose a refinement-based learning strategy to synthesize natural talking videos using two cascaded networks, i.e., CoarseNet, and RefineNet. The CoarseNet estimates coarse motions to produce animated images in novel poses and the RefineNet focuses on learning finer lip motions by progressively estimating lip motions from low-to-high resolutions, yielding improved lip-synchronization performance. Experiments demonstrate our pose prediction strategy achieves better pose diversity and realness compared to text-only or audio-only, and our video generator model outperforms state-of-the-art methods in synthesizing talking videos with natural head motions. Project: https://junleen.github.io/projects/posetalk.
Abstract:We propose In-Context Translation (ICT), a general learning framework to unify visual recognition (e.g., semantic segmentation), low-level image processing (e.g., denoising), and conditional image generation (e.g., edge-to-image synthesis). Thanks to unification, ICT significantly reduces the inherent inductive bias that comes with designing models for specific tasks, and it maximizes mutual enhancement across similar tasks. However, the unification across a large number of tasks is non-trivial due to various data formats and training pipelines. To this end, ICT introduces two designs. Firstly, it standardizes input-output data of different tasks into RGB image pairs, e.g., semantic segmentation data pairs an RGB image with its segmentation mask in the same RGB format. This turns different tasks into a general translation task between two RGB images. Secondly, it standardizes the training of different tasks into a general in-context learning, where "in-context" means the input comprises an example input-output pair of the target task and a query image. The learning objective is to generate the "missing" data paired with the query. The implicit translation process is thus between the query and the generated image. In experiments, ICT unifies ten vision tasks and showcases impressive performance on their respective benchmarks. Notably, compared to its competitors, e.g., Painter and PromptDiffusion, ICT trained on only 4 RTX 3090 GPUs is shown to be more efficient and less costly in training.
Abstract:We present GenN2N, a unified NeRF-to-NeRF translation framework for various NeRF translation tasks such as text-driven NeRF editing, colorization, super-resolution, inpainting, etc. Unlike previous methods designed for individual translation tasks with task-specific schemes, GenN2N achieves all these NeRF editing tasks by employing a plug-and-play image-to-image translator to perform editing in the 2D domain and lifting 2D edits into the 3D NeRF space. Since the 3D consistency of 2D edits may not be assured, we propose to model the distribution of the underlying 3D edits through a generative model that can cover all possible edited NeRFs. To model the distribution of 3D edited NeRFs from 2D edited images, we carefully design a VAE-GAN that encodes images while decoding NeRFs. The latent space is trained to align with a Gaussian distribution and the NeRFs are supervised through an adversarial loss on its renderings. To ensure the latent code does not depend on 2D viewpoints but truly reflects the 3D edits, we also regularize the latent code through a contrastive learning scheme. Extensive experiments on various editing tasks show GenN2N, as a universal framework, performs as well or better than task-specific specialists while possessing flexible generative power. More results on our project page: https://xiangyueliu.github.io/GenN2N/
Abstract:This paper explores the development of UniFolding, a sample-efficient, scalable, and generalizable robotic system for unfolding and folding various garments. UniFolding employs the proposed UFONet neural network to integrate unfolding and folding decisions into a single policy model that is adaptable to different garment types and states. The design of UniFolding is based on a garment's partial point cloud, which aids in generalization and reduces sensitivity to variations in texture and shape. The training pipeline prioritizes low-cost, sample-efficient data collection. Training data is collected via a human-centric process with offline and online stages. The offline stage involves human unfolding and folding actions via Virtual Reality, while the online stage utilizes human-in-the-loop learning to fine-tune the model in a real-world setting. The system is tested on two garment types: long-sleeve and short-sleeve shirts. Performance is evaluated on 20 shirts with significant variations in textures, shapes, and materials. More experiments and videos can be found in the supplementary materials and on the website: https://unifolding.robotflow.ai
Abstract:Tactile sensing is one of the modalities humans rely on heavily to perceive the world. Working with vision, this modality refines local geometry structure, measures deformation at the contact area, and indicates the hand-object contact state. With the availability of open-source tactile sensors such as DIGIT, research on visual-tactile learning is becoming more accessible and reproducible. Leveraging this tactile sensor, we propose a novel visual-tactile in-hand object reconstruction framework \textbf{VTacO}, and extend it to \textbf{VTacOH} for hand-object reconstruction. Since our method can support both rigid and deformable object reconstruction, no existing benchmarks are proper for the goal. We propose a simulation environment, VT-Sim, which supports generating hand-object interaction for both rigid and deformable objects. With VT-Sim, we generate a large-scale training dataset and evaluate our method on it. Extensive experiments demonstrate that our proposed method can outperform the previous baseline methods qualitatively and quantitatively. Finally, we directly apply our model trained in simulation to various real-world test cases, which display qualitative results. Codes, models, simulation environment, and datasets are available at \url{https://sites.google.com/view/vtaco/}.
Abstract:Typical layout-to-image synthesis (LIS) models generate images for a closed set of semantic classes, e.g., 182 common objects in COCO-Stuff. In this work, we explore the freestyle capability of the model, i.e., how far can it generate unseen semantics (e.g., classes, attributes, and styles) onto a given layout, and call the task Freestyle LIS (FLIS). Thanks to the development of large-scale pre-trained language-image models, a number of discriminative models (e.g., image classification and object detection) trained on limited base classes are empowered with the ability of unseen class prediction. Inspired by this, we opt to leverage large-scale pre-trained text-to-image diffusion models to achieve the generation of unseen semantics. The key challenge of FLIS is how to enable the diffusion model to synthesize images from a specific layout which very likely violates its pre-learned knowledge, e.g., the model never sees "a unicorn sitting on a bench" during its pre-training. To this end, we introduce a new module called Rectified Cross-Attention (RCA) that can be conveniently plugged in the diffusion model to integrate semantic masks. This "plug-in" is applied in each cross-attention layer of the model to rectify the attention maps between image and text tokens. The key idea of RCA is to enforce each text token to act on the pixels in a specified region, allowing us to freely put a wide variety of semantics from pre-trained knowledge (which is general) onto the given layout (which is specific). Extensive experiments show that the proposed diffusion network produces realistic and freestyle layout-to-image generation results with diverse text inputs, which has a high potential to spawn a bunch of interesting applications. Code is available at https://github.com/essunny310/FreestyleNet.
Abstract:Garments are important to humans. A visual system that can estimate and track the complete garment pose can be useful for many downstream tasks and real-world applications. In this work, we present a complete package to address the category-level garment pose tracking task: (1) A recording system VR-Garment, with which users can manipulate virtual garment models in simulation through a VR interface. (2) A large-scale dataset VR-Folding, with complex garment pose configurations in manipulation like flattening and folding. (3) An end-to-end online tracking framework GarmentTracking, which predicts complete garment pose both in canonical space and task space given a point cloud sequence. Extensive experiments demonstrate that the proposed GarmentTracking achieves great performance even when the garment has large non-rigid deformation. It outperforms the baseline approach on both speed and accuracy. We hope our proposed solution can serve as a platform for future research. Codes and datasets are available in https://garment-tracking.robotflow.ai.
Abstract:Household environments are important testbeds for embodied AI research. Many simulation environments have been proposed to develop learning models for solving everyday household tasks. However, though interactions are paid attention to in most environments, the actions operating on the objects are not well supported concerning action types, object types, and interaction physics. To bridge the gap at the action level, we propose a novel physics-based action-centric environment, RFUniverse, for robot learning of everyday household tasks. RFUniverse supports interactions among 87 atomic actions and 8 basic object types in a visually and physically plausible way. To demonstrate the usability of the simulation environment, we perform learning algorithms on various types of tasks, namely fruit-picking, cloth-folding and sponge-wiping for manipulation, stair-chasing for locomotion, room-cleaning for multi-agent collaboration, milk-pouring for task and motion planning, and bimanual-lifting for behavior cloning from VR interface. Client-side Python APIs, learning codes, models, and the database will be released. Demo video for atomic actions can be found in supplementary materials: \url{https://sites.google.com/view/rfuniverse}
Abstract:Articulated objects are pervasive in daily life. However, due to the intrinsic high-DoF structure, the joint states of the articulated objects are hard to be estimated. To model articulated objects, two kinds of shape deformations namely the geometric and the pose deformation should be considered. In this work, we present a novel category-specific parametric representation called Object Model with Articulated Deformations (OMAD) to explicitly model the articulated objects. In OMAD, a category is associated with a linear shape function with shared shape basis and a non-linear joint function. Both functions can be learned from a large-scale object model dataset and fixed as category-specific priors. Then we propose an OMADNet to predict the shape parameters and the joint states from an object's single observation. With the full representation of the object shape and joint states, we can address several tasks including category-level object pose estimation and the articulated object retrieval. To evaluate these tasks, we create a synthetic dataset based on PartNet-Mobility. Extensive experiments show that our simple OMADNet can serve as a strong baseline for both tasks.