Abstract:Human motion synthesis is a fundamental task in computer animation. Despite recent progress in this field utilizing deep learning and motion capture data, existing methods are always limited to specific motion categories, environments, and styles. This poor generalizability can be partially attributed to the difficulty and expense of collecting large-scale and high-quality motion data. At the same time, foundation models trained with internet-scale image and text data have demonstrated surprising world knowledge and reasoning ability for various downstream tasks. Utilizing these foundation models may help with human motion synthesis, which some recent works have superficially explored. However, these methods didn't fully unveil the foundation models' potential for this task and only support several simple actions and environments. In this paper, we for the first time, without any motion data, explore open-set human motion synthesis using natural language instructions as user control signals based on MLLMs across any motion task and environment. Our framework can be split into two stages: 1) sequential keyframe generation by utilizing MLLMs as a keyframe designer and animator; 2) motion filling between keyframes through interpolation and motion tracking. Our method can achieve general human motion synthesis for many downstream tasks. The promising results demonstrate the worth of mocap-free human motion synthesis aided by MLLMs and pave the way for future research.
Abstract:Learning from Demonstration (LfD) is a framework that allows lay users to easily program robots. However, the efficiency of robot learning and the robot's ability to generalize to task variations hinges upon the quality and quantity of the provided demonstrations. Our objective is to guide human teachers to furnish more effective demonstrations, thus facilitating efficient robot learning. To achieve this, we propose to use a measure of uncertainty, namely task-related information entropy, as a criterion for suggesting informative demonstration examples to human teachers to improve their teaching skills. In a conducted experiment (N=24), an augmented reality (AR)-based guidance system was employed to train novice users to produce additional demonstrations from areas with the highest entropy within the workspace. These novice users were trained for a few trials to teach the robot a generalizable task using a limited number of demonstrations. Subsequently, the users' performance after training was assessed first on the same task (retention) and then on a novel task (transfer) without guidance. The results indicated a substantial improvement in robot learning efficiency from the teacher's demonstrations, with an improvement of up to 198% observed on the novel task. Furthermore, the proposed approach was compared to a state-of-the-art heuristic rule and found to improve robot learning efficiency by 210% compared to the heuristic rule.
Abstract:Instance segmentation of point clouds is a crucial task in 3D field with numerous applications that involve localizing and segmenting objects in a scene. However, achieving satisfactory results requires a large number of manual annotations, which is a time-consuming and expensive process. To alleviate dependency on annotations, we propose a method, called FreePoint, for underexplored unsupervised class-agnostic instance segmentation on point clouds. In detail, we represent the point features by combining coordinates, colors, normals, and self-supervised deep features. Based on the point features, we perform a multicut algorithm to segment point clouds into coarse instance masks as pseudo labels, which are used to train a point cloud instance segmentation model. To alleviate the inaccuracy of coarse masks during training, we propose a weakly-supervised training strategy and corresponding loss. Our work can also serve as an unsupervised pre-training pretext for supervised semantic instance segmentation with limited annotations. For class-agnostic instance segmentation on point clouds, FreePoint largely fills the gap with its fully-supervised counterpart based on the state-of-the-art instance segmentation model Mask3D and even surpasses some previous fully-supervised methods. When serving as a pretext task and fine-tuning on S3DIS, FreePoint outperforms training from scratch by 5.8% AP with only 10% mask annotations.