We propose In-Context Translation (ICT), a general learning framework to unify visual recognition (e.g., semantic segmentation), low-level image processing (e.g., denoising), and conditional image generation (e.g., edge-to-image synthesis). Thanks to unification, ICT significantly reduces the inherent inductive bias that comes with designing models for specific tasks, and it maximizes mutual enhancement across similar tasks. However, the unification across a large number of tasks is non-trivial due to various data formats and training pipelines. To this end, ICT introduces two designs. Firstly, it standardizes input-output data of different tasks into RGB image pairs, e.g., semantic segmentation data pairs an RGB image with its segmentation mask in the same RGB format. This turns different tasks into a general translation task between two RGB images. Secondly, it standardizes the training of different tasks into a general in-context learning, where "in-context" means the input comprises an example input-output pair of the target task and a query image. The learning objective is to generate the "missing" data paired with the query. The implicit translation process is thus between the query and the generated image. In experiments, ICT unifies ten vision tasks and showcases impressive performance on their respective benchmarks. Notably, compared to its competitors, e.g., Painter and PromptDiffusion, ICT trained on only 4 RTX 3090 GPUs is shown to be more efficient and less costly in training.