Abstract:In this paper, we introduce FAMMA, an open-source benchmark for financial multilingual multimodal question answering (QA). Our benchmark aims to evaluate the abilities of multimodal large language models (MLLMs) in answering questions that require advanced financial knowledge and sophisticated reasoning. It includes 1,758 meticulously collected question-answer pairs from university textbooks and exams, spanning 8 major subfields in finance including corporate finance, asset management, and financial engineering. Some of the QA pairs are written in Chinese or French, while a majority of them are in English. These questions are presented in a mixed format combining text and heterogeneous image types, such as charts, tables, and diagrams. We evaluate a range of state-of-the-art MLLMs on our benchmark, and our analysis shows that FAMMA poses a significant challenge for these models. Even advanced systems like GPT-4o and Claude-35-Sonnet achieve only 42\% accuracy. Additionally, the open-source Qwen2-VL lags notably behind its proprietary counterparts. Lastly, we explore GPT o1-style reasoning chains to enhance the models' reasoning capabilities, which significantly improve error correction. Our FAMMA benchmark will facilitate future research to develop expert systems in financial QA. The leaderboard is available at https://famma-bench.github.io/famma/ .
Abstract:Time series forecasts of different temporal granularity are widely used in real-world applications, e.g., sales prediction in days and weeks for making different inventory plans. However, these tasks are usually solved separately without ensuring coherence, which is crucial for aligning downstream decisions. Previous works mainly focus on ensuring coherence with some straightforward methods, e.g., aggregation from the forecasts of fine granularity to the coarse ones, and allocation from the coarse granularity to the fine ones. These methods merely take the temporal hierarchical structure to maintain coherence without improving the forecasting accuracy. In this paper, we propose a novel granularity message-passing mechanism (GMP) that leverages temporal hierarchy information to improve forecasting performance and also utilizes an adaptive reconciliation (AR) strategy to maintain coherence without performance loss. Furthermore, we introduce an optimization module to achieve task-based targets while adhering to more real-world constraints. Experiments on real-world datasets demonstrate that our framework (GMP-AR) achieves superior performances on temporal hierarchical forecasting tasks compared to state-of-the-art methods. In addition, our framework has been successfully applied to a real-world task of payment traffic management in Alipay by integrating with the task-based optimization module.
Abstract:If robots are to work effectively alongside people, they must be able to interpret natural language references to objects in their 3D environment. Understanding 3D referring expressions is challenging -- it requires the ability to both parse the 3D structure of the scene and correctly ground free-form language in the presence of distraction and clutter. We introduce Transcrib3D, an approach that brings together 3D detection methods and the emergent reasoning capabilities of large language models (LLMs). Transcrib3D uses text as the unifying medium, which allows us to sidestep the need to learn shared representations connecting multi-modal inputs, which would require massive amounts of annotated 3D data. As a demonstration of its effectiveness, Transcrib3D achieves state-of-the-art results on 3D reference resolution benchmarks, with a great leap in performance from previous multi-modality baselines. To improve upon zero-shot performance and facilitate local deployment on edge computers and robots, we propose self-correction for fine-tuning that trains smaller models, resulting in performance close to that of large models. We show that our method enables a real robot to perform pick-and-place tasks given queries that contain challenging referring expressions. Project site is at https://ripl.github.io/Transcrib3D.
Abstract:Effective generation of novel hypotheses is instrumental to scientific progress. So far, researchers have been the main powerhouse behind hypothesis generation by painstaking data analysis and thinking (also known as the Eureka moment). In this paper, we examine the potential of large language models (LLMs) to generate hypotheses. We focus on hypothesis generation based on data (i.e., labeled examples). To enable LLMs to handle arbitrarily long contexts, we generate initial hypotheses from a small number of examples and then update them iteratively to improve the quality of hypotheses. Inspired by multi-armed bandits, we design a reward function to inform the exploitation-exploration tradeoff in the update process. Our algorithm is able to generate hypotheses that enable much better predictive performance than few-shot prompting in classification tasks, improving accuracy by 31.7% on a synthetic dataset and by 13.9%, 3.3% and, 24.9% on three real-world datasets. We also outperform supervised learning by 12.8% and 11.2% on two challenging real-world datasets. Furthermore, we find that the generated hypotheses not only corroborate human-verified theories but also uncover new insights for the tasks.
Abstract:Large language models such as ChatGPT and GPT-4 have recently achieved astonishing performance on a variety of natural language processing tasks. In this paper, we propose MANGO, a benchmark to evaluate their capabilities to perform text-based mapping and navigation. Our benchmark includes 53 mazes taken from a suite of textgames: each maze is paired with a walkthrough that visits every location but does not cover all possible paths. The task is question-answering: for each maze, a large language model reads the walkthrough and answers hundreds of mapping and navigation questions such as "How should you go to Attic from West of House?" and "Where are we if we go north and east from Cellar?". Although these questions are easy to humans, it turns out that even GPT-4, the best-to-date language model, performs poorly at answering them. Further, our experiments suggest that a strong mapping and navigation ability would benefit large language models in performing relevant downstream tasks, such as playing textgames. Our MANGO benchmark will facilitate future research on methods that improve the mapping and navigation capabilities of language models. We host our leaderboard, data, code, and evaluation program at https://mango.ttic.edu and https://github.com/oaklight/mango/.
Abstract:We present WeaverBird, an intelligent dialogue system designed specifically for the finance domain. Our system harnesses a large language model of GPT architecture that has been tuned using extensive corpora of finance-related text. As a result, our system possesses the capability to understand complex financial queries, such as "How should I manage my investments during inflation?", and provide informed responses. Furthermore, our system incorporates a local knowledge base and a search engine to retrieve relevant information. The final responses are conditioned on the search results and include proper citations to the sources, thus enjoying an enhanced credibility. Through a range of finance-related questions, we have demonstrated the superior performance of our system compared to other models. To experience our system firsthand, users can interact with our live demo at https://weaverbird.ttic.edu, as well as watch our 2-min video illustration at https://www.youtube.com/watch?v=fyV2qQkX6Tc.
Abstract:Continuous-time event sequences play a vital role in real-world domains such as healthcare, finance, online shopping, social networks, and so on. To model such data, temporal point processes (TPPs) have emerged as the most advanced generative models, making a significant impact in both academic and application communities. Despite the emergence of many powerful models in recent years, there is still no comprehensive benchmark to evaluate them. This lack of standardization impedes researchers and practitioners from comparing methods and reproducing results, potentially slowing down progress in this field. In this paper, we present EasyTPP, which aims to establish a central benchmark for evaluating TPPs. Compared to previous work that also contributed datasets, our EasyTPP has three unique contributions to the community: (i) a comprehensive implementation of eight highly cited neural TPPs with the integration of commonly used evaluation metrics and datasets; (ii) a standardized benchmarking pipeline for a transparent and thorough comparison of different methods on different datasets; (iii) a universal framework supporting multiple ML libraries (e.g., PyTorch and TensorFlow) as well as custom implementations. Our benchmark is open-sourced: all the data and implementation can be found at this \href{https://github.com/ant-research/EasyTemporalPointProcess}{\textcolor{blue}{Github repository}}\footnote{\url{https://github.com/ant-research/EasyTemporalPointProcess}.}. We will actively maintain this benchmark and welcome contributions from other researchers and practitioners. Our benchmark will help promote reproducible research in this field, thus accelerating research progress as well as making more significant real-world impacts.
Abstract:Large language models (LLMs) provide a promising tool that enable robots to perform complex robot reasoning tasks. However, the limited context window of contemporary LLMs makes reasoning over long time horizons difficult. Embodied tasks such as those that one might expect a household robot to perform typically require that the planner consider information acquired a long time ago (e.g., properties of the many objects that the robot previously encountered in the environment). Attempts to capture the world state using an LLM's implicit internal representation is complicated by the paucity of task- and environment-relevant information available in a robot's action history, while methods that rely on the ability to convey information via the prompt to the LLM are subject to its limited context window. In this paper, we propose Statler, a framework that endows LLMs with an explicit representation of the world state as a form of ``memory'' that is maintained over time. Integral to Statler is its use of two instances of general LLMs -- a world-model reader and a world-model writer -- that interface with and maintain the world state. By providing access to this world state ``memory'', Statler improves the ability of existing LLMs to reason over longer time horizons without the constraint of context length. We evaluate the effectiveness of our approach on three simulated table-top manipulation domains and a real robot domain, and show that it improves the state-of-the-art in LLM-based robot reasoning. Project website: https://statler-lm.github.io/
Abstract:Large language models have shown astonishing performance on a wide range of reasoning tasks. In this paper, we investigate whether they could reason about real-world events and help improve the prediction accuracy of event sequence models. We design a modeling and prediction framework where a large language model performs abductive reasoning to assist an event sequence model: the event model proposes predictions on future events given the past; instructed by a few expert-annotated demonstrations, the language model learns to suggest possible causes for each proposal; a search module finds out the previous events that match the causes; a scoring function learns to examine whether the retrieved events could actually cause the proposal. Through extensive experiments on two challenging real-world datasets (Amazon Review and GDELT), we demonstrate that our framework -- thanks to the reasoning ability of language models -- could significantly outperform the state-of-the-art event sequence models.
Abstract:To predict the next token, autoregressive models ordinarily examine the past. Could they also benefit from also examining hypothetical futures? We consider a novel Transformer-based autoregressive architecture that estimates the next-token distribution by extrapolating multiple continuations of the past, according to some proposal distribution, and attending to these extended strings. This architecture draws insights from classical AI systems such as board game players: when making a local decision, a policy may benefit from exploring possible future trajectories and analyzing them. On multiple tasks including morphological inflection and Boolean satisfiability, our lookahead model is able to outperform the ordinary Transformer model of comparable size. However, on some tasks, it appears to be benefiting from the extra computation without actually using the lookahead information. We discuss possible variant architectures as well as future speedups.