Traditional wireless image transmission methods struggle to balance rate efficiency and reconstruction quality under varying channel conditions. To address these challenges, we propose a novel semantic communication (SemCom) system that integrates entropy-aware and channel-adaptive mechanisms for wireless image transmission over multi-user multiple-input multiple-output (MU-MIMO) fading channels. Unlike existing approaches, our system dynamically adjusts transmission rates based on the entropy of feature maps, channel state information (CSI), and signal-to-noise ratio (SNR), ensuring optimal resource utilization and robust performance. The system employs feature map pruning, channel attention, spatial attention, and multihead self-attention (MHSA) mechanisms to prioritize critical semantic features and effectively reconstruct images. Experimental results demonstrate that the proposed system outperforms state-of-the-art benchmarks, including BPG+LDPC+4QAM and Deep JSCC, in terms of rate-distortion performance, flexibility, and robustness, particularly under challenging conditions such as low SNR, imperfect CSI, and inter-user interference. This work establishes a strong foundation for adaptive-rate SemCom systems and highlights their potential for real-time, bandwidthintensive applications.