Abstract:Real-time bidding (RTB) has become a critical way of online advertising. In RTB, an advertiser can participate in bidding ad impressions to display its advertisements. The advertiser determines every impression's bidding price according to its bidding strategy. Therefore, a good bidding strategy can help advertisers improve cost efficiency. This paper focuses on optimizing a single advertiser's bidding strategy using reinforcement learning (RL) in RTB. Unfortunately, it is challenging to optimize the bidding strategy through RL at the granularity of impression due to the highly dynamic nature of the RTB environment. In this paper, we first utilize a widely accepted linear bidding function to compute every impression's base price and optimize it by a mutable adjustment factor derived from the RTB auction environment, to avoid optimizing every impression's bidding price directly. Specifically, we use the maximum entropy RL algorithm (Soft Actor-Critic) to optimize the adjustment factor generation policy at the impression-grained level. Finally, the empirical study on a public dataset demonstrates that the proposed bidding strategy has superior performance compared with the baselines.
Abstract:Although deep convolution neural networks (DCNN) have achieved excellent performance in human pose estimation, these networks often have a large number of parameters and computations, leading to the slow inference speed. For this issue, an effective solution is knowledge distillation, which transfers knowledge from a large pre-trained network (teacher) to a small network (student). However, there are some defects in the existing approaches: (I) Only a single teacher is adopted, neglecting the potential that a student can learn from multiple teachers. (II) The human segmentation mask can be regarded as additional prior information to restrict the location of keypoints, which is never utilized. (III) A student with a small number of parameters cannot fully imitate heatmaps provided by datasets and teachers. (IV) There exists noise in heatmaps generated by teachers, which causes model degradation. To overcome these defects, we propose an orderly dual-teacher knowledge distillation (ODKD) framework, which consists of two teachers with different capabilities. Specifically, the weaker one (primary teacher, PT) is used to teach keypoints information, the stronger one (senior teacher, ST) is utilized to transfer segmentation and keypoints information by adding the human segmentation mask. Taking dual-teacher together, an orderly learning strategy is proposed to promote knowledge absorbability. Moreover, we employ a binarization operation which further improves the learning ability of the student and reduces noise in heatmaps. Experimental results on COCO and OCHuman keypoints datasets show that our proposed ODKD can improve the performance of different lightweight models by a large margin, and HRNet-W16 equipped with ODKD achieves state-of-the-art performance for lightweight human pose estimation.