School of Cyber Science and Technology, Zhejiang University
Abstract:Natural language processing (NLP) has seen remarkable advancements with the development of large language models (LLMs). Despite these advancements, LLMs often produce socially biased outputs. Recent studies have mainly addressed this problem by prompting LLMs to behave ethically, but this approach results in unacceptable performance degradation. In this paper, we propose a multi-objective approach within a multi-agent framework (MOMA) to mitigate social bias in LLMs without significantly compromising their performance. The key idea of MOMA involves deploying multiple agents to perform causal interventions on bias-related contents of the input questions, breaking the shortcut connection between these contents and the corresponding answers. Unlike traditional debiasing techniques leading to performance degradation, MOMA substantially reduces bias while maintaining accuracy in downstream tasks. Our experiments conducted on two datasets and two models demonstrate that MOMA reduces bias scores by up to 87.7%, with only a marginal performance degradation of up to 6.8% in the BBQ dataset. Additionally, it significantly enhances the multi-objective metric icat in the StereoSet dataset by up to 58.1%. Code will be made available at https://github.com/Cortantse/MOMA.
Abstract:This work asks: with abundant, unlabeled real faces, how to learn a robust and transferable facial representation that boosts various face security tasks with respect to generalization performance? We make the first attempt and propose a self-supervised pretraining framework to learn fundamental representations of real face images, FSFM, that leverages the synergy between masked image modeling (MIM) and instance discrimination (ID). We explore various facial masking strategies for MIM and present a simple yet powerful CRFR-P masking, which explicitly forces the model to capture meaningful intra-region consistency and challenging inter-region coherency. Furthermore, we devise the ID network that naturally couples with MIM to establish underlying local-to-global correspondence via tailored self-distillation. These three learning objectives, namely 3C, empower encoding both local features and global semantics of real faces. After pretraining, a vanilla ViT serves as a universal vision foundation model for downstream face security tasks: cross-dataset deepfake detection, cross-domain face anti-spoofing, and unseen diffusion facial forgery detection. Extensive experiments on 10 public datasets demonstrate that our model transfers better than supervised pretraining, visual and facial self-supervised learning arts, and even outperforms task-specialized SOTA methods.
Abstract:We propose and analyze a class of adaptive sampling algorithms for multimodal distributions on a bounded domain, which share a structural resemblance to the classic overdamped Langevin dynamics. We first demonstrate that this class of linear dynamics with adaptive diffusion coefficients and vector fields can be interpreted and analyzed as weighted Wasserstein gradient flows of the Kullback--Leibler (KL) divergence between the current distribution and the target Gibbs distribution, which directly leads to the exponential convergence of both the KL and $\chi^2$ divergences, with rates depending on the weighted Wasserstein metric and the Gibbs potential. We then show that a derivative-free version of the dynamics can be used for sampling without gradient information of the Gibbs potential and that for Gibbs distributions with nonconvex potentials, this approach could achieve significantly faster convergence than the classical overdamped Langevin dynamics. A comparison of the mean transition times between local minima of a nonconvex potential further highlights the better efficiency of the derivative-free dynamics in sampling.
Abstract:Graph clustering is an unsupervised machine learning method that partitions the nodes in a graph into different groups. Despite achieving significant progress in exploiting both attributed and structured data information, graph clustering methods often face practical challenges related to data isolation. Moreover, the absence of collaborative methods for graph clustering limits their effectiveness. In this paper, we propose a collaborative graph clustering framework for attributed graphs, supporting attributed graph clustering over vertically partitioned data with different participants holding distinct features of the same data. Our method leverages a novel technique that reduces the sample space, improving the efficiency of the attributed graph clustering method. Furthermore, we compare our method to its centralized counterpart under a proximity condition, demonstrating that the successful local results of each participant contribute to the overall success of the collaboration. We fully implement our approach and evaluate its utility and efficiency by conducting experiments on four public datasets. The results demonstrate that our method achieves comparable accuracy levels to centralized attributed graph clustering methods. Our collaborative graph clustering framework provides an efficient and effective solution for graph clustering challenges related to data isolation.
Abstract:Data is the new oil of the 21st century. The growing trend of trading data for greater welfare has led to the emergence of data markets. A data market is any mechanism whereby the exchange of data products including datasets and data derivatives takes place as a result of data buyers and data sellers being in contact with one another, either directly or through mediating agents. It serves as a coordinating mechanism by which several functions, including the pricing and the distribution of data as the most important ones, interact to make the value of data fully exploited and enhanced. In this article, we present a comprehensive survey of this important and emerging direction from the aspects of data search, data productization, data transaction, data pricing, revenue allocation as well as privacy, security, and trust issues. We also investigate the government policies and industry status of data markets across different countries and different domains. Finally, we identify the unresolved challenges and discuss possible future directions for the development of data markets.
Abstract:Embeddings have become a cornerstone in the functionality of large language models (LLMs) due to their ability to transform text data into rich, dense numerical representations that capture semantic and syntactic properties. These embedding vector databases serve as the long-term memory of LLMs, enabling efficient handling of a wide range of natural language processing tasks. However, the surge in popularity of embedding vector databases in LLMs has been accompanied by significant concerns about privacy leakage. Embedding vector databases are particularly vulnerable to embedding inversion attacks, where adversaries can exploit the embeddings to reverse-engineer and extract sensitive information from the original text data. Existing defense mechanisms have shown limitations, often struggling to balance security with the performance of downstream tasks. To address these challenges, we introduce Eguard, a novel defense mechanism designed to mitigate embedding inversion attacks. Eguard employs a transformer-based projection network and text mutual information optimization to safeguard embeddings while preserving the utility of LLMs. Our approach significantly reduces privacy risks, protecting over 95% of tokens from inversion while maintaining high performance across downstream tasks consistent with original embeddings.
Abstract:With the growing performance requirements on networked applications, there is a new trend of offloading stateful network applications to SmartNICs to improve performance and reduce the total cost of ownership. However, offloading stateful network applications is non-trivial due to state operation complexity, state resource consumption, and the complicated relationship between traffic and state. Naively partitioning the program by state or traffic can result in a suboptimal partition plan with higher CPU usage or even packet drops. In this paper, we propose Cora, a compiler and runtime that offloads stateful network applications to SmartNIC-accelerated hosts. Cora compiler introduces an accurate performance model for each SmartNIC and employs an efficient compiling algorithm to search the offloading plan. Cora runtime can monitor traffic dynamics and adapt to minimize CPU usage. Cora is built atop Netronome Agilio and BlueField 2 SmartNICs. Our evaluation shows that for the same throughput target, Cora can propose partition plans saving up to 94.0% CPU cores, 1.9 times more than baseline solutions. Under the same resource constraint, Cora can accelerate network functions by 44.9%-82.3%. Cora runtime can adapt to traffic changes and keep CPU usage low.
Abstract:This work studies phase retrieval for wave fields, aiming to recover the phase of an incoming wave from multi-plane intensity measurements behind different types of linear and nonlinear media. We show that unique phase retrieval can be achieved by utilizing intensity data produced by multiple media. This uniqueness does not require prescribed boundary conditions for the phase in the incidence plane, in contrast to existing phase retrieval methods based on the transport of intensity equation. Moreover, the uniqueness proofs lead to explicit phase reconstruction algorithms. Numerical simulations are presented to validate the theory.
Abstract:Extensive research has revealed that adversarial examples (AE) pose a significant threat to voice-controllable smart devices. Recent studies have proposed black-box adversarial attacks that require only the final transcription from an automatic speech recognition (ASR) system. However, these attacks typically involve many queries to the ASR, resulting in substantial costs. Moreover, AE-based adversarial audio samples are susceptible to ASR updates. In this paper, we identify the root cause of these limitations, namely the inability to construct AE attack samples directly around the decision boundary of deep learning (DL) models. Building on this observation, we propose ALIF, the first black-box adversarial linguistic feature-based attack pipeline. We leverage the reciprocal process of text-to-speech (TTS) and ASR models to generate perturbations in the linguistic embedding space where the decision boundary resides. Based on the ALIF pipeline, we present the ALIF-OTL and ALIF-OTA schemes for launching attacks in both the digital domain and the physical playback environment on four commercial ASRs and voice assistants. Extensive evaluations demonstrate that ALIF-OTL and -OTA significantly improve query efficiency by 97.7% and 73.3%, respectively, while achieving competitive performance compared to existing methods. Notably, ALIF-OTL can generate an attack sample with only one query. Furthermore, our test-of-time experiment validates the robustness of our approach against ASR updates.
Abstract:Recently, advanced Large Language Models (LLMs) such as GPT-4 have been integrated into many real-world applications like Code Copilot. These applications have significantly expanded the attack surface of LLMs, exposing them to a variety of threats. Among them, jailbreak attacks that induce toxic responses through jailbreak prompts have raised critical safety concerns. To identify these threats, a growing number of red teaming approaches simulate potential adversarial scenarios by crafting jailbreak prompts to test the target LLM. However, existing red teaming methods do not consider the unique vulnerabilities of LLM in different scenarios, making it difficult to adjust the jailbreak prompts to find context-specific vulnerabilities. Meanwhile, these methods are limited to refining jailbreak templates using a few mutation operations, lacking the automation and scalability to adapt to different scenarios. To enable context-aware and efficient red teaming, we abstract and model existing attacks into a coherent concept called "jailbreak strategy" and propose a multi-agent LLM system named RedAgent that leverages these strategies to generate context-aware jailbreak prompts. By self-reflecting on contextual feedback in an additional memory buffer, RedAgent continuously learns how to leverage these strategies to achieve effective jailbreaks in specific contexts. Extensive experiments demonstrate that our system can jailbreak most black-box LLMs in just five queries, improving the efficiency of existing red teaming methods by two times. Additionally, RedAgent can jailbreak customized LLM applications more efficiently. By generating context-aware jailbreak prompts towards applications on GPTs, we discover 60 severe vulnerabilities of these real-world applications with only two queries per vulnerability. We have reported all found issues and communicated with OpenAI and Meta for bug fixes.