Abstract:Diffusion models have achieved remarkable success in novel view synthesis, but their reliance on large, diverse, and often untraceable Web datasets has raised pressing concerns about image copyright protection. Current methods fall short in reliably identifying unauthorized image use, as they struggle to generalize across varied generation tasks and fail when the training dataset includes images from multiple sources with few identifiable (watermarked or poisoned) samples. In this paper, we present novel evidence that diffusion-generated images faithfully preserve the statistical properties of their training data, particularly reflected in their spectral features. Leveraging this insight, we introduce \emph{CoprGuard}, a robust frequency domain watermarking framework to safeguard against unauthorized image usage in diffusion model training and fine-tuning. CoprGuard demonstrates remarkable effectiveness against a wide range of models, from naive diffusion models to sophisticated text-to-image models, and is robust even when watermarked images comprise a mere 1\% of the training dataset. This robust and versatile approach empowers content owners to protect their intellectual property in the era of AI-driven image generation.
Abstract:Human pose estimation, with its broad applications in action recognition and motion capture, has experienced significant advancements. However, current Transformer-based methods for video pose estimation often face challenges in managing redundant temporal information and achieving fine-grained perception because they only focus on processing low-resolution features. To address these challenges, we propose a novel multi-scale resolution framework that encodes spatio-temporal representations at varying granularities and executes fine-grained perception compensation. Furthermore, we employ a density peaks clustering method to dynamically identify and prioritize tokens that offer important semantic information. This strategy effectively prunes redundant feature tokens, especially those arising from multi-frame features, thereby optimizing computational efficiency without sacrificing semantic richness. Empirically, it sets new benchmarks for both performance and efficiency on three large-scale datasets. Our method achieves a 93.8% improvement in inference speed compared to the baseline, while also enhancing pose estimation accuracy, reaching 87.4 mAP on the PoseTrack2017 dataset.
Abstract:Smart contracts, closely intertwined with cryptocurrency transactions, have sparked widespread concerns about considerable financial losses of security issues. To counteract this, a variety of tools have been developed to identify vulnerability in smart contract. However, they fail to overcome two challenges at the same time when faced with smart contract bytecode: (i) strong interference caused by enormous non-relevant instructions; (ii) missing semantics of bytecode due to incomplete data and control flow dependencies. In this paper, we propose a multi-teacher based bytecode vulnerability detection method, namely Multi-Teacher Vulnerability Hunter (MTVHunter), which delivers effective denoising and missing semantic to bytecode under multi-teacher guidance. Specifically, we first propose an instruction denoising teacher to eliminate noise interference by abstract vulnerability pattern and further reflect in contract embeddings. Secondly, we design a novel semantic complementary teacher with neuron distillation, which effectively extracts necessary semantic from source code to replenish the bytecode. Particularly, the proposed neuron distillation accelerate this semantic filling by turning the knowledge transition into a regression task. We conduct experiments on 229,178 real-world smart contracts that concerns four types of common vulnerabilities. Extensive experiments show MTVHunter achieves significantly performance gains over state-of-the-art approaches.
Abstract:Grasping the intricacies of human motion, which involve perceiving spatio-temporal dependence and multi-scale effects, is essential for predicting human motion. While humans inherently possess the requisite skills to navigate this issue, it proves to be markedly more challenging for machines to emulate. To bridge the gap, we propose the Human-like Vision and Inference System (HVIS) for human motion prediction, which is designed to emulate human observation and forecast future movements. HVIS comprises two components: the human-like vision encode (HVE) module and the human-like motion inference (HMI) module. The HVE module mimics and refines the human visual process, incorporating a retina-analog component that captures spatiotemporal information separately to avoid unnecessary crosstalk. Additionally, a visual cortex-analogy component is designed to hierarchically extract and treat complex motion features, focusing on both global and local features of human poses. The HMI is employed to simulate the multi-stage learning model of the human brain. The spontaneous learning network simulates the neuronal fracture generation process for the adversarial generation of future motions. Subsequently, the deliberate learning network is optimized for hard-to-train joints to prevent misleading learning. Experimental results demonstrate that our method achieves new state-of-the-art performance, significantly outperforming existing methods by 19.8% on Human3.6M, 15.7% on CMU Mocap, and 11.1% on G3D.
Abstract:Human pose estimation in videos remains a challenge, largely due to the reliance on extensive manual annotation of large datasets, which is expensive and labor-intensive. Furthermore, existing approaches often struggle to capture long-range temporal dependencies and overlook the complementary relationship between temporal pose heatmaps and visual features. To address these limitations, we introduce STDPose, a novel framework that enhances human pose estimation by learning spatiotemporal dynamics in sparsely-labeled videos. STDPose incorporates two key innovations: 1) A novel Dynamic-Aware Mask to capture long-range motion context, allowing for a nuanced understanding of pose changes. 2) A system for encoding and aggregating spatiotemporal representations and motion dynamics to effectively model spatiotemporal relationships, improving the accuracy and robustness of pose estimation. STDPose establishes a new performance benchmark for both video pose propagation (i.e., propagating pose annotations from labeled frames to unlabeled frames) and pose estimation tasks, across three large-scale evaluation datasets. Additionally, utilizing pseudo-labels generated by pose propagation, STDPose achieves competitive performance with only 26.7% labeled data.
Abstract:Human pose estimation has given rise to a broad spectrum of novel and compelling applications, including action recognition, sports analysis, as well as surveillance. However, accurate video pose estimation remains an open challenge. One aspect that has been overlooked so far is that existing methods learn motion clues from all pixels rather than focusing on the target human body, making them easily misled and disrupted by unimportant information such as background changes or movements of other people. Additionally, while the current Transformer-based pose estimation methods has demonstrated impressive performance with global modeling, they struggle with local context perception and precise positional identification. In this paper, we try to tackle these challenges from three aspects: (1) We propose a bilayer Human-Keypoint Mask module that performs coarse-to-fine visual token refinement, which gradually zooms in on the target human body and keypoints while masking out unimportant figure regions. (2) We further introduce a novel deformable cross attention mechanism and a bidirectional separation strategy to adaptively aggregate spatial and temporal motion clues from constrained surrounding contexts. (3) We mathematically formulate the deformable cross attention, constraining that the model focuses solely on the regions centered at the target person body. Empirically, our method achieves state-of-the-art performance on three large-scale benchmark datasets. A remarkable highlight is that our method achieves an 84.8 mean Average Precision (mAP) on the challenging wrist joint, which significantly outperforms the 81.5 mAP achieved by the current state-of-the-art method on the PoseTrack2017 dataset.
Abstract:Video-based human pose estimation has long been a fundamental yet challenging problem in computer vision. Previous studies focus on spatio-temporal modeling through the enhancement of architecture design and optimization strategies. However, they overlook the causal relationships in the joints, leading to models that may be overly tailored and thus estimate poorly to challenging scenes. Therefore, adequate causal reasoning capability, coupled with good interpretability of model, are both indispensable and prerequisite for achieving reliable results. In this paper, we pioneer a causal perspective on pose estimation and introduce a causal-inspired multitask learning framework, consisting of two stages. \textit{In the first stage}, we try to endow the model with causal spatio-temporal modeling ability by introducing two self-supervision auxiliary tasks. Specifically, these auxiliary tasks enable the network to infer challenging keypoints based on observed keypoint information, thereby imbuing causal reasoning capabilities into the model and making it robust to challenging scenes. \textit{In the second stage}, we argue that not all feature tokens contribute equally to pose estimation. Prioritizing causal (keypoint-relevant) tokens is crucial to achieve reliable results, which could improve the interpretability of the model. To this end, we propose a Token Causal Importance Selection module to identify the causal tokens and non-causal tokens (\textit{e.g.}, background and objects). Additionally, non-causal tokens could provide potentially beneficial cues but may be redundant. We further introduce a non-causal tokens clustering module to merge the similar non-causal tokens. Extensive experiments show that our method outperforms state-of-the-art methods on three large-scale benchmark datasets.
Abstract:This work asks: with abundant, unlabeled real faces, how to learn a robust and transferable facial representation that boosts various face security tasks with respect to generalization performance? We make the first attempt and propose a self-supervised pretraining framework to learn fundamental representations of real face images, FSFM, that leverages the synergy between masked image modeling (MIM) and instance discrimination (ID). We explore various facial masking strategies for MIM and present a simple yet powerful CRFR-P masking, which explicitly forces the model to capture meaningful intra-region consistency and challenging inter-region coherency. Furthermore, we devise the ID network that naturally couples with MIM to establish underlying local-to-global correspondence via tailored self-distillation. These three learning objectives, namely 3C, empower encoding both local features and global semantics of real faces. After pretraining, a vanilla ViT serves as a universal vision foundation model for downstream face security tasks: cross-dataset deepfake detection, cross-domain face anti-spoofing, and unseen diffusion facial forgery detection. Extensive experiments on 10 public datasets demonstrate that our model transfers better than supervised pretraining, visual and facial self-supervised learning arts, and even outperforms task-specialized SOTA methods.
Abstract:Nowadays, federated recommendation technology is rapidly evolving to help multiple organisations share data and train models while meeting user privacy, data security and government regulatory requirements. However, federated recommendation increases customer system costs such as power, computational and communication resources. Besides, federated recommendation systems are also susceptible to model attacks and data poisoning by participating malicious clients. Therefore, most customers are unwilling to participate in federated recommendation without any incentive. To address these problems, we propose a blockchain-based federated recommendation system with incentive mechanism to promote more trustworthy, secure, and efficient federated recommendation service. First, we construct a federated recommendation system based on NeuMF and FedAvg. Then we introduce a reverse auction mechanism to select optimal clients that can maximize the social surplus. Finally, we employ blockchain for on-chain evidence storage of models to ensure the safety of the federated recommendation system. The experimental results show that our proposed incentive mechanism can attract clients with superior training data to engage in the federal recommendation at a lower cost, which can increase the economic benefit of federal recommendation by 54.9\% while improve the recommendation performance. Thus our work provides theoretical and technological support for the construction of a harmonious and healthy ecological environment for the application of federal recommendation.
Abstract:The escalating prevalence of encryption protocols has led to a concomitant surge in the number of malicious attacks that hide in encrypted traffic. Power grid systems, as fundamental infrastructure, are becoming prime targets for such attacks. Conventional methods for detecting malicious encrypted packets typically use a static pre-trained model. We observe that these methods are not well-suited for blockchain-based power grid systems. More critically, they fall short in dynamic environments where new types of encrypted attacks continuously emerge. Motivated by this, in this paper we try to tackle these challenges from two aspects: (1) We present a novel framework that is able to automatically detect malicious encrypted traffic in blockchain-based power grid systems and incrementally learn from new malicious traffic. (2) We mathematically derive incremental learning losses to resist the forgetting of old attack patterns while ensuring the model is capable of handling new encrypted attack patterns. Empirically, our method achieves state-of-the-art performance on three different benchmark datasets. We also constructed the first malicious encrypted traffic dataset for blockchain-based power grid scenario. Our code and dataset are available at https://github.com/PPPmzt/ETGuard, hoping to inspire future research.