Abstract:Human pose estimation in videos remains a challenge, largely due to the reliance on extensive manual annotation of large datasets, which is expensive and labor-intensive. Furthermore, existing approaches often struggle to capture long-range temporal dependencies and overlook the complementary relationship between temporal pose heatmaps and visual features. To address these limitations, we introduce STDPose, a novel framework that enhances human pose estimation by learning spatiotemporal dynamics in sparsely-labeled videos. STDPose incorporates two key innovations: 1) A novel Dynamic-Aware Mask to capture long-range motion context, allowing for a nuanced understanding of pose changes. 2) A system for encoding and aggregating spatiotemporal representations and motion dynamics to effectively model spatiotemporal relationships, improving the accuracy and robustness of pose estimation. STDPose establishes a new performance benchmark for both video pose propagation (i.e., propagating pose annotations from labeled frames to unlabeled frames) and pose estimation tasks, across three large-scale evaluation datasets. Additionally, utilizing pseudo-labels generated by pose propagation, STDPose achieves competitive performance with only 26.7% labeled data.
Abstract:Human pose estimation has given rise to a broad spectrum of novel and compelling applications, including action recognition, sports analysis, as well as surveillance. However, accurate video pose estimation remains an open challenge. One aspect that has been overlooked so far is that existing methods learn motion clues from all pixels rather than focusing on the target human body, making them easily misled and disrupted by unimportant information such as background changes or movements of other people. Additionally, while the current Transformer-based pose estimation methods has demonstrated impressive performance with global modeling, they struggle with local context perception and precise positional identification. In this paper, we try to tackle these challenges from three aspects: (1) We propose a bilayer Human-Keypoint Mask module that performs coarse-to-fine visual token refinement, which gradually zooms in on the target human body and keypoints while masking out unimportant figure regions. (2) We further introduce a novel deformable cross attention mechanism and a bidirectional separation strategy to adaptively aggregate spatial and temporal motion clues from constrained surrounding contexts. (3) We mathematically formulate the deformable cross attention, constraining that the model focuses solely on the regions centered at the target person body. Empirically, our method achieves state-of-the-art performance on three large-scale benchmark datasets. A remarkable highlight is that our method achieves an 84.8 mean Average Precision (mAP) on the challenging wrist joint, which significantly outperforms the 81.5 mAP achieved by the current state-of-the-art method on the PoseTrack2017 dataset.
Abstract:Video-based human pose estimation has long been a fundamental yet challenging problem in computer vision. Previous studies focus on spatio-temporal modeling through the enhancement of architecture design and optimization strategies. However, they overlook the causal relationships in the joints, leading to models that may be overly tailored and thus estimate poorly to challenging scenes. Therefore, adequate causal reasoning capability, coupled with good interpretability of model, are both indispensable and prerequisite for achieving reliable results. In this paper, we pioneer a causal perspective on pose estimation and introduce a causal-inspired multitask learning framework, consisting of two stages. \textit{In the first stage}, we try to endow the model with causal spatio-temporal modeling ability by introducing two self-supervision auxiliary tasks. Specifically, these auxiliary tasks enable the network to infer challenging keypoints based on observed keypoint information, thereby imbuing causal reasoning capabilities into the model and making it robust to challenging scenes. \textit{In the second stage}, we argue that not all feature tokens contribute equally to pose estimation. Prioritizing causal (keypoint-relevant) tokens is crucial to achieve reliable results, which could improve the interpretability of the model. To this end, we propose a Token Causal Importance Selection module to identify the causal tokens and non-causal tokens (\textit{e.g.}, background and objects). Additionally, non-causal tokens could provide potentially beneficial cues but may be redundant. We further introduce a non-causal tokens clustering module to merge the similar non-causal tokens. Extensive experiments show that our method outperforms state-of-the-art methods on three large-scale benchmark datasets.
Abstract:This work asks: with abundant, unlabeled real faces, how to learn a robust and transferable facial representation that boosts various face security tasks with respect to generalization performance? We make the first attempt and propose a self-supervised pretraining framework to learn fundamental representations of real face images, FSFM, that leverages the synergy between masked image modeling (MIM) and instance discrimination (ID). We explore various facial masking strategies for MIM and present a simple yet powerful CRFR-P masking, which explicitly forces the model to capture meaningful intra-region consistency and challenging inter-region coherency. Furthermore, we devise the ID network that naturally couples with MIM to establish underlying local-to-global correspondence via tailored self-distillation. These three learning objectives, namely 3C, empower encoding both local features and global semantics of real faces. After pretraining, a vanilla ViT serves as a universal vision foundation model for downstream face security tasks: cross-dataset deepfake detection, cross-domain face anti-spoofing, and unseen diffusion facial forgery detection. Extensive experiments on 10 public datasets demonstrate that our model transfers better than supervised pretraining, visual and facial self-supervised learning arts, and even outperforms task-specialized SOTA methods.
Abstract:Nowadays, federated recommendation technology is rapidly evolving to help multiple organisations share data and train models while meeting user privacy, data security and government regulatory requirements. However, federated recommendation increases customer system costs such as power, computational and communication resources. Besides, federated recommendation systems are also susceptible to model attacks and data poisoning by participating malicious clients. Therefore, most customers are unwilling to participate in federated recommendation without any incentive. To address these problems, we propose a blockchain-based federated recommendation system with incentive mechanism to promote more trustworthy, secure, and efficient federated recommendation service. First, we construct a federated recommendation system based on NeuMF and FedAvg. Then we introduce a reverse auction mechanism to select optimal clients that can maximize the social surplus. Finally, we employ blockchain for on-chain evidence storage of models to ensure the safety of the federated recommendation system. The experimental results show that our proposed incentive mechanism can attract clients with superior training data to engage in the federal recommendation at a lower cost, which can increase the economic benefit of federal recommendation by 54.9\% while improve the recommendation performance. Thus our work provides theoretical and technological support for the construction of a harmonious and healthy ecological environment for the application of federal recommendation.
Abstract:The escalating prevalence of encryption protocols has led to a concomitant surge in the number of malicious attacks that hide in encrypted traffic. Power grid systems, as fundamental infrastructure, are becoming prime targets for such attacks. Conventional methods for detecting malicious encrypted packets typically use a static pre-trained model. We observe that these methods are not well-suited for blockchain-based power grid systems. More critically, they fall short in dynamic environments where new types of encrypted attacks continuously emerge. Motivated by this, in this paper we try to tackle these challenges from two aspects: (1) We present a novel framework that is able to automatically detect malicious encrypted traffic in blockchain-based power grid systems and incrementally learn from new malicious traffic. (2) We mathematically derive incremental learning losses to resist the forgetting of old attack patterns while ensuring the model is capable of handling new encrypted attack patterns. Empirically, our method achieves state-of-the-art performance on three different benchmark datasets. We also constructed the first malicious encrypted traffic dataset for blockchain-based power grid scenario. Our code and dataset are available at https://github.com/PPPmzt/ETGuard, hoping to inspire future research.
Abstract:Human pose estimation in videos has long been a compelling yet challenging task within the realm of computer vision. Nevertheless, this task remains difficult because of the complex video scenes, such as video defocus and self-occlusion. Recent methods strive to integrate multi-frame visual features generated by a backbone network for pose estimation. However, they often ignore the useful joint information encoded in the initial heatmap, which is a by-product of the backbone generation. Comparatively, methods that attempt to refine the initial heatmap fail to consider any spatio-temporal motion features. As a result, the performance of existing methods for pose estimation falls short due to the lack of ability to leverage both local joint (heatmap) information and global motion (feature) dynamics. To address this problem, we propose a novel joint-motion mutual learning framework for pose estimation, which effectively concentrates on both local joint dependency and global pixel-level motion dynamics. Specifically, we introduce a context-aware joint learner that adaptively leverages initial heatmaps and motion flow to retrieve robust local joint feature. Given that local joint feature and global motion flow are complementary, we further propose a progressive joint-motion mutual learning that synergistically exchanges information and interactively learns between joint feature and motion flow to improve the capability of the model. More importantly, to capture more diverse joint and motion cues, we theoretically analyze and propose an information orthogonality objective to avoid learning redundant information from multi-cues. Empirical experiments show our method outperforms prior arts on three challenging benchmarks.
Abstract:Human motion copy is an intriguing yet challenging task in artificial intelligence and computer vision, which strives to generate a fake video of a target person performing the motion of a source person. The problem is inherently challenging due to the subtle human-body texture details to be generated and the temporal consistency to be considered. Existing approaches typically adopt a conventional GAN with an L1 or L2 loss to produce the target fake video, which intrinsically necessitates a large number of training samples that are challenging to acquire. Meanwhile, current methods still have difficulties in attaining realistic image details and temporal consistency, which unfortunately can be easily perceived by human observers. Motivated by this, we try to tackle the issues from three aspects: (1) We constrain pose-to-appearance generation with a perceptual loss and a theoretically motivated Gromov-Wasserstein loss to bridge the gap between pose and appearance. (2) We present an episodic memory module in the pose-to-appearance generation to propel continuous learning that helps the model learn from its past poor generations. We also utilize geometrical cues of the face to optimize facial details and refine each key body part with a dedicated local GAN. (3) We advocate generating the foreground in a sequence-to-sequence manner rather than a single-frame manner, explicitly enforcing temporal inconsistency. Empirical results on five datasets, iPER, ComplexMotion, SoloDance, Fish, and Mouse datasets, demonstrate that our method is capable of generating realistic target videos while precisely copying motion from a source video. Our method significantly outperforms state-of-the-art approaches and gains 7.2% and 12.4% improvements in PSNR and FID respectively.
Abstract:Effective expression feature representations generated by a triplet-based deep metric learning are highly advantageous for facial expression recognition (FER). The performance of triplet-based deep metric learning is contingent upon identifying the best threshold for triplet loss. Threshold validation, however, is tough and challenging, as the ideal threshold changes among datasets and even across classes within the same dataset. In this paper, we present the multi-threshold deep metric learning technique, which not only avoids the difficult threshold validation but also vastly increases the capacity of triplet loss learning to construct expression feature representations. We find that each threshold of the triplet loss intrinsically determines a distinctive distribution of inter-class variations and corresponds, thus, to a unique expression feature representation. Therefore, rather than selecting a single optimal threshold from a valid threshold range, we thoroughly sample thresholds across the range, allowing the representation characteristics manifested by thresholds within the range to be fully extracted and leveraged for FER. To realize this approach, we partition the embedding layer of the deep metric learning network into a collection of slices and model training these embedding slices as an end-to-end multi-threshold deep metric learning problem. Each embedding slice corresponds to a sample threshold and is learned by enforcing the corresponding triplet loss, yielding a set of distinct expression features, one for each embedding slice. It makes the embedding layer, which is composed of a set of slices, a more informative and discriminative feature, hence enhancing the FER accuracy. Extensive evaluations demonstrate the superior performance of the proposed approach on both posed and spontaneous facial expression datasets.
Abstract:Deepfake technology has given rise to a spectrum of novel and compelling applications. Unfortunately, the widespread proliferation of high-fidelity fake videos has led to pervasive confusion and deception, shattering our faith that seeing is believing. One aspect that has been overlooked so far is that current deepfake detection approaches may easily fall into the trap of overfitting, focusing only on forgery clues within one or a few local regions. Moreover, existing works heavily rely on neural networks to extract forgery features, lacking theoretical constraints guaranteeing that sufficient forgery clues are extracted and superfluous features are eliminated. These deficiencies culminate in unsatisfactory accuracy and limited generalizability in real-life scenarios. In this paper, we try to tackle these challenges through three designs: (1) We present a novel framework to capture broader forgery clues by extracting multiple non-overlapping local representations and fusing them into a global semantic-rich feature. (2) Based on the information bottleneck theory, we derive Local Information Loss to guarantee the orthogonality of local representations while preserving comprehensive task-relevant information. (3) Further, to fuse the local representations and remove task-irrelevant information, we arrive at a Global Information Loss through the theoretical analysis of mutual information. Empirically, our method achieves state-of-the-art performance on five benchmark datasets.Our code is available at \url{https://github.com/QingyuLiu/Exposing-the-Deception}, hoping to inspire researchers.